Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(22): 8598-8604, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220076

RESUMO

Single-molecule magnets (SMMs) distinguish themselves in the field of quantum magnetism through the ability to combine fundamental research with promising applications. The evolution of quantum spintronics in the last decade exemplifies the potential held by molecular-based quantum devices. Notably, the readout and manipulation of the nuclear spin states embedded in a lanthanide-based SMM hybrid device were employed in proof of principle studies of quantum computation at the single-molecule level. In the quest for further understanding of the relaxation behavior in SMMs for their integration in novel applications, herein, we study the relaxation dynamics of the 159Tb nuclear spins in a diluted molecular crystal employing the recently acquired understanding of the nonadiabatic dynamics of TbPc2 molecules. Through numerical simulation, we find that phonon-modulated hyperfine interaction opens a direct relaxation channel between the nuclear spins and the phonon bath. The mechanism is of potential importance for the theory of spin bath and the relaxation dynamics of the molecular spins.

2.
Nat Commun ; 14(1): 3361, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291099

RESUMO

The development of quantum technologies requires a thorough understanding of systems possessing quantum effects that can ultimately be manipulated. In the field of molecular magnetism, one of the main challenges is to measure high-order ligand field parameters, which play an essential role in the relaxation properties of SMMs. The development of highly advanced theoretical calculations has allowed the ab-initio determination of such parameters; however, currently, there is a lack of quantitative assessment of how good the ab-initio parameters are. In our quest for technologies that can allow the extraction of such elusive parameters, we develop an experimental technique that combines the EPR spectroscopy and µSQUID magnetometry. We demonstrate the power of the technique by performing EPR-µSQUID measurement of a magnetically diluted single crystal of Et4N[GdPc2], by sweeping the magnetic field and applying a range of multifrequency microwave pulses. As a result, we were able to directly determine the high-order ligand field parameters of the system, enabling us to test theoretical predictions made by state-of-the-art ab-initio methods.


Assuntos
Teoria Quântica , Ligantes , Espectroscopia de Ressonância de Spin Eletrônica
3.
Nat Commun ; 13(1): 1737, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365645

RESUMO

Josephson meta-materials have recently emerged as very promising platform for superconducting quantum science and technologies. Their distinguishing potential resides in ability to engineer them at sub-wavelength scales, which allows complete control over wave dispersion and nonlinear interaction. In this article we report a versatile Josephson transmission line with strong third order nonlinearity which can be tuned from positive to negative values, and suppressed second order non linearity. As an initial implementation of this multipurpose meta-material, we operate it to demonstrate reversed Kerr phase-matching mechanism in traveling wave parametric amplification. Compared to previous state of the art phase matching approaches, this reversed Kerr phase matching avoids the presence of gaps in transmission, can reduce gain ripples, and allows in situ tunability of the amplification band over an unprecedented wide range. Besides such notable advancements in the amplification performance with direct applications to superconducting quantum computing and generation of broadband squeezing, the in-situ tunability with sign reversal of the nonlinearity in traveling wave structures, with no counterpart in optics to the best of our knowledge, opens exciting experimental possibilities in the general framework of microwave quantum optics, single-photon detection and quantum limited amplification.

4.
Nat Commun ; 12(1): 4443, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290250

RESUMO

Quantum technologies are expected to introduce revolutionary changes in information processing in the near future. Nowadays, one of the main challenges is to be able to handle a large number of quantum bits (qubits), while preserving their quantum properties. Beyond the usual two-level encoding capacity of qubits, multi-level quantum systems are a promising way to extend and increase the amount of information that can be stored in the same number of quantum objects. Recent work (Kues et al. 2017), has shown the possibility to use devices based on photonic integrated circuits to entangle two qudits (with "d" being the number of available states). In the race to develop a mature quantum technology with real-world applications, many possible platforms are being investigated, including those that use photons, trapped ions, superconducting and silicon circuits and molecular magnets. In this work, we present the electronic read-out of a coupled molecular multi-level quantum systems, carried by a single Tb2Pc3 molecular magnet. Owning two magnetic centres, this molecular magnet architecture permits a 16 dimensions Hilbert space, opening the possibility of performing more complex quantum algorithms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa