Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069434

RESUMO

The mammalian central nervous system (CNS) is built up during embryogenesis by neural stem cells located in the periventricular germinal layers which undergo multiple division cycles [...].


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Células-Tronco Neurais/fisiologia , Sistema Nervoso Central , Desenvolvimento Embrionário , Mamíferos , Encéfalo
2.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768845

RESUMO

Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.


Assuntos
Proteínas Associadas aos Microtúbulos , Neuropeptídeos , Camundongos , Adulto , Animais , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Domínio Duplacortina , Antígeno Ki-67/metabolismo , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Neurogênese/fisiologia , Mamíferos/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457217

RESUMO

Can plasticity be considered as an extension of "immaturity" [...].


Assuntos
Plasticidade Neuronal , Neurônios , Encéfalo , Plasticidade Neuronal/fisiologia
4.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502267

RESUMO

Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.


Assuntos
Encéfalo , Plasticidade Neuronal , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas do Domínio Duplacortina , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Animais , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ácidos Siálicos/metabolismo
5.
J Neurosci ; 38(4): 826-842, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29217680

RESUMO

A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.


Assuntos
Encéfalo/citologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Feminino , Masculino , Células-Tronco Neurais/citologia , Ovinos
6.
Physiol Rev ; 91(4): 1281-304, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22013212

RESUMO

Regenerative processes occurring under physiological (maintenance) and pathological (reparative) conditions are a fundamental part of life and vary greatly among different species, individuals, and tissues. Physiological regeneration occurs naturally as a consequence of normal cell erosion, or as an inevitable outcome of any biological process aiming at the restoration of homeostasis. Reparative regeneration occurs as a consequence of tissue damage. Although the central nervous system (CNS) has been considered for years as a "perennial" tissue, it has recently become clear that both physiological and reparative regeneration occur also within the CNS to sustain tissue homeostasis and repair. Proliferation and differentiation of neural stem/progenitor cells (NPCs) residing within the healthy CNS, or surviving injury, are considered crucial in sustaining these processes. Thus a large number of experimental stem cell-based transplantation systems for CNS repair have recently been established. The results suggest that transplanted NPCs promote tissue repair not only via cell replacement but also through their local contribution to changes in the diseased tissue milieu. This review focuses on the remarkable plasticity of endogenous and exogenous (transplanted) NPCs in promoting repair. Special attention will be given to the cross-talk existing between NPCs and CNS-resident microglia as well as CNS-infiltrating immune cells from the circulation, as a crucial event sustaining NPC-mediated neuroprotection. Finally, we will propose the concept of the context-dependent potency of transplanted NPCs (therapeutic plasticity) to exert multiple therapeutic actions, such as cell replacement, neurotrophic support, and immunomodulation, in CNS repair.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Regeneração/fisiologia , Animais , Comunicação Celular/fisiologia , Humanos , Sistema Imunitário/fisiologia , Células-Tronco Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Transplante de Células-Tronco
7.
Development ; 141(21): 4065-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25336736

RESUMO

In the adult brain, active stem cells are a subset of astrocytes residing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Whether quiescent neuronal progenitors occur in other brain regions is unclear. Here, we describe a novel neurogenic system in the external capsule and lateral striatum (EC-LS) of the juvenile guinea pig that is quiescent at birth but becomes active around weaning. Activation of neurogenesis in this region was accompanied by the emergence of a neurogenic-like niche in the ventral EC characterized by chains of neuroblasts, intermediate-like progenitors and glial cells expressing markers of immature astrocytes. Like neurogenic astrocytes of the SVZ and DG, these latter cells showed a slow rate of proliferation and retained BrdU labeling for up to 65 days, suggesting that they are the primary progenitors of the EC-LS neurogenic system. Injections of GFP-tagged lentiviral vectors into the SVZ and the EC-LS of newborn animals confirmed that new LS neuroblasts originate from the activation of local progenitors and further supported their astroglial nature. Newborn EC-LS neurons existed transiently and did not contribute to neuronal addition or replacement. Nevertheless, they expressed Sp8 and showed strong tropism for white matter tracts, wherein they acquired complex morphologies. For these reasons, we propose that EC-LS neuroblasts represent a novel striatal cell type, possibly related to those populations of transient interneurons that regulate the development of fiber tracts during embryonic life.


Assuntos
Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Feminino , Cobaias , Masculino , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Técnicas de Cultura de Tecidos
8.
Brain Behav Evol ; 87(3): 205-221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560356

RESUMO

Mammalian adult neurogenesis has remained enigmatic. Two lines of research have emerged. One focuses on a potential repair mechanism in the human brain. The other aims at elucidating its functional role in the hippocampal formation, chiefly in cognitive processes; however, thus far it has been unsuccessful. Here, we try to recognize the sources of errors and conceptual confusion in comparative studies and neurobehavioral approaches with a focus on mice. Evolutionarily, mammalian adult neurogenesis appears as protracted juvenile neurogenesis originating from precursor cells in the secondary proliferation zones, from where newly formed cells migrate to target regions in the forebrain. This late developmental process is downregulated differentially in various brain structures depending on species and age. Adult neurogenesis declines substantially during early adulthood and persists at low levels into senescence. Short-lasting episodes in proliferation or reduction of adult neurogenesis may reflect a multitude of factors, and have been studied chiefly in mice and rats. Comparative studies face both species-specific variations in staining and technical abilities of laboratories, lacking quantification of important reference measures (e.g. granule cell number) and evaluation of maturational markers whose persistence might be functionally more relevant than proliferation rates. Likewise, the confusion about the functional role of variations in adult hippocampal neurogenesis has many causes. Prominent is an inferential statistical approach, usually with low statistical power. Interpretation is complicated by multiple theories about hippocampal function, often unrealistically extrapolating from humans to rodents. We believe that the field of mammalian adult neurogenesis needs more critical thinking, more sophisticated hypotheses, better statistical, technical and behavioral approaches, and a broader conceptual perspective incorporating comparative aspects rather than neglecting them.

9.
Proc Natl Acad Sci U S A ; 110(11): E1045-54, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23431204

RESUMO

Proliferating neural stem cells and intermediate progenitors persist in the ventricular-subventricular zone (V-SVZ) of the adult mammalian brain. This extensive germinal layer in the walls of the lateral ventricles is the site of birth of different types of interneurons destined for the olfactory bulb. The cell cycle dynamics of stem cells (B1 cells), intermediate progenitors (C cells), and neuroblasts (A cells) in the V-SVZ and the number of times these cells divide remain unknown. Using whole mounts of the walls of the lateral ventricles of adult mice and three cell cycle analysis methods using thymidine analogs, we determined the proliferation dynamics of B1, C, and A cells in vivo. Achaete-scute complex homolog (Ascl)1(+) C cells were heterogeneous with a cell cycle length (T(C)) of 18-25 h and a long S phase length (T(S)) of 14-17 h. After C cells, Doublecortin(+) A cells were the second-most common dividing cell type in the V-SVZ and had a T(C) of 18 h and T(S) of 9 h. Human glial fibrillary acidic protein (hGFAP)::GFP(+) B1 cells had a surprisingly short Tc of 17-18 h and a T(S) of 4 h. Progenitor population analysis suggests that following the initial division of B1 cells, C cells divide three times and A cells once, possibly twice. These data provide essential information on the dynamics of adult progenitor cell proliferation in the V-SVZ and how large numbers of new neurons continue to be produced in the adult mammalian brain.


Assuntos
Células-Tronco Adultas/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Fase S/fisiologia , Células-Tronco Adultas/citologia , Animais , Humanos , Ventrículos Laterais/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Fatores de Tempo
10.
Hum Mol Genet ; 21(21): 4732-50, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859505

RESUMO

We report a novel role for the lysosomal galactosylceramidase (GALC), which is defective in globoid cell leukodystrophy (GLD), in maintaining a functional post-natal subventricular zone (SVZ) neurogenic niche. We show that proliferation/self-renewal of neural stem cells (NSCs) and survival of their neuronal and oligodendroglial progeny are impaired in GALC-deficient mice. Using drugs to modulate inflammation and gene transfer to rescue GALC expression and activity, we show that lipid accumulation resulting from GALC deficiency acts as a cell-autonomous pathogenic stimulus in enzyme-deficient NSCs and progeny before upregulation of inflammatory markers, which later sustain a non-cell-autonomous dysfunction. Importantly, we provide evidence that supply of functional GALC provided by neonatal intracerebral transplantation of NSCs ameliorates the functional impairment in endogenous SVZ cells. Insights into the mechanism/s underlying GALC-mediated regulation of early post-natal neurogenic niches improve our understanding of the multi-component pathology of GLD. The occurrence of a restricted period of SVZ neurogenesis in infancy supports the implications of our study for the development of therapeutic strategies to treat this severe pediatric neurodegenerative disorder.


Assuntos
Sistema Nervoso Central , Galactosilceramidase , Leucodistrofia de Células Globoides , Células-Tronco Neurais , Animais , Proliferação de Células , Transplante de Células , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/crescimento & desenvolvimento , Criança , Modelos Animais de Doenças , Galactosilceramidase/deficiência , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Oligodendroglia/metabolismo
11.
Sports (Basel) ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668562

RESUMO

This study aimed to identify the relationship between dryland tests and swimming performance in elite Paralympic swimmers. Fifteen competitive swimmers (age: 27.4 ± 5.4 years, height: 1.70 ± 6.8 m, body mass: 67.9 ± 9.2 kg; 9 males, 6 females) performed a lat pull-down and a bench press incremental load test to determine maximum power (Pmax), the strength corresponding to maximum power (F@Pmax), and the barbell velocity corresponding to maximum power (V@Pmax) from the force-velocity and power-velocity profiles. These outcomes were also normalized by the athlete's body mass. Swimming performance was carried out from the best result in a 100 m freestyle race registered during an international competition. Lat pull-down F@Pmax was significantly associated with 100 m freestyle chronometric time (ρ = -0.56, p < 0.05), and lat pull-down V@Pmax presented a relationship with mean swimming velocity (ρ = 0.71, p < 0.01). Similarly, bench press F@Pmax and the normalized F@Pmax were significantly related to the mean swimming velocity (ρ = -0.51, ρ = -0.62, p < 0.05). Stepwise multiple regression showed that lat pull-down V@Pmax, bench press normF@Pmax, and V@Pmax accounted for 40.6%, 42.3%, and 65.8% (p < 0.05) of the mean swimming velocity variance. These preliminary results highlighted that simple dryland tests, although with a moderate relationship, are significantly associated with 100 m freestyle swimming performance in elite Paralympic swimmers.

12.
Brain Struct Funct ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833544

RESUMO

Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.

13.
Aging Cell ; 22(12): e13974, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649323

RESUMO

Beyond the canonical neurogenic niches, there are dormant neuronal precursors in several regions of the adult mammalian brain. Dormant precursors maintain persisting post-mitotic immaturity from birth to adulthood, followed by staggered awakening, in a process that is still largely unresolved. Strikingly, due to the slow rate of awakening, some precursors remain immature until old age, which led us to question whether their awakening and maturation are affected by aging. To this end, we studied the maturation of dormant precursors in transgenic mice (DCX-CreERT2 /flox-EGFP) in which immature precursors were labelled permanently in vivo at different ages. We found that dormant precursors are capable of awakening at young age, becoming adult-matured neurons (AM), as well as of awakening at old age, becoming late AM. Thus, protracted immaturity does not prevent late awakening and maturation. However, late AM diverged morphologically and functionally from AM. Moreover, AM were functionally most similar to neonatal-matured neurons (NM). Conversely, late AM were endowed with high intrinsic excitability and high input resistance, and received a smaller amount of spontaneous synaptic input, implying their relative immaturity. Thus, late AM awakening still occurs at advanced age, but the maturation process is slow.


Assuntos
Proteína Duplacortina , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Neurogênese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
14.
Front Cell Neurosci ; 17: 1205173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576566

RESUMO

The recent identification of a population of non-newly born, prenatally generated "immature" neurons in the layer II of the piriform cortex (cortical immature neurons, cINs), raises questions concerning their maintenance or depletion through the lifespan. Most forms of brain structural plasticity progressively decline with age, a feature that is particularly prominent in adult neurogenesis, due to stem cell depletion. By contrast, the entire population of the cINs is produced during embryogenesis. Then these cells simply retain immaturity in postnatal and adult stages, until they "awake" to complete their maturation and ultimately integrate into neural circuits. Hence, the question remains open whether the cINs, which are not dependent on stem cell division, might follow a similar pattern of age-related reduction, or in alternative, might leave a reservoir of young, undifferentiated cells in the adult and aging brain. Here, the number and features of cINs were analyzed in the mouse piriform cortex from postnatal to advanced ages, by using immunocytochemistry for the cytoskeletal marker doublecortin. The abundance and stage of maturation of cINs, along with the expression of other markers of maturity/immaturity were investigated. Despite a marked decrease in this neuronal population during juvenile stages, reminiscent of that observed in hippocampal neurogenesis, a small amount of highly immature cINs persisted up to advanced ages. Overall, albeit reducing in number with increasing age, we report that the cINs are present through the entire animal lifespan.

15.
Front Neurosci ; 16: 918616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733930

RESUMO

After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This "canonical" neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of "young" neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the "young" neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different "types" of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?

16.
Nat Commun ; 13(1): 2331, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484145

RESUMO

In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.


Assuntos
Células Precursoras de Oligodendrócitos , Animais , Dano ao DNA , Camundongos , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/metabolismo , Prosencéfalo
17.
Eur J Neurosci ; 34(6): 930-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21929626

RESUMO

Investigations of adult neurogenesis in recent years have revealed numerous differences among mammalian species, reflecting the remarkable diversity in brain anatomy and function of mammals. As a mechanism of brain plasticity, adult neurogenesis might also differ due to behavioural specialization or adaptation to specific ecological niches. Because most research has focused on rodents and only limited data are available on other mammalian orders, it is hotly debated whether, in some species, adult neurogenesis also takes place outside of the well-characterized subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus. In particular, evidence for the functional integration of new neurons born in 'non-neurogenic' zones is controversial. Considering the promise of adult neurogenesis for regenerative medicine, we posit that differences in the extent, regional occurrence and completion of adult neurogenesis need to be considered from a species-specific perspective. In this review, we provide examples underscoring that the mechanisms of adult neurogenesis cannot simply be generalized to all mammalian species. Despite numerous similarities, there are distinct differences, notably in neuronal maturation, survival and functional integration in existing synaptic circuits, as well as in the nature and localization of neural precursor cells. We also propose a more appropriate use of terminology to better describe these differences and their relevance for brain plasticity under physiological and pathophysiological conditions. In conclusion, we emphasize the need for further analysis of adult neurogenesis in diverse mammalian species to fully grasp the spectrum of variation of this adaptative mechanism in the adult CNS.


Assuntos
Mamíferos/fisiologia , Neurogênese/fisiologia , Adulto , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Cerebelo/crescimento & desenvolvimento , Ventrículos Cerebrais/crescimento & desenvolvimento , Corpo Estriado/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Humanos , Hipotálamo/crescimento & desenvolvimento , Neocórtex/crescimento & desenvolvimento , Neuroglia/fisiologia , Especificidade da Espécie
18.
ScientificWorldJournal ; 11: 1270-99, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21666994

RESUMO

Regeneration is a strategy to maintain form and function throughout life. Studies carried out on animal models throughout the phylogenetic tree have flourished in the last decades in search of mechanisms underlying the regenerative processes. The development of such studies is strictly linked with stem cell research and both are viewed as one of the most promising outcomes for regenerative medicine; yet, regeneration, stem cells, and tissue repair do not seem to follow a logical path through the different animal species and tissues. As a result, some mammalian organs, e.g., kidney and brain, have lost most of their regenerative capacity. The human nervous system, although harboring neural stem cells, is placed at the extreme of "perennial" tissues. In addition, it is affected by neurodegenerative diseases, whose heavy burden is heightened by enhanced life spans. This review, starting from the basic principles of tissue regeneration viewed in a comparative context, tries to answer this question: To which extent can regenerative medicine be figured out in a mammalian brain equipped with many anatomical/evolutionary constraints?


Assuntos
Encéfalo/fisiologia , Hydra/fisiologia , Regeneração , Animais , Evolução Biológica , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Humanos , Neurogênese , Neuroglia/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Cicatrização
19.
Cells ; 10(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34685522

RESUMO

Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.


Assuntos
Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/citologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Ácidos Siálicos/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Neurogênese/fisiologia
20.
Brain Sci ; 11(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800571

RESUMO

BACKGROUND: Public engagement (PE) is defined as the involvement of "specialists who listen, develop their understanding, and interact with non-specialists in non-profit activities of educational, cultural, and social nature to engage the public in science-related matters". The public health relevance of PE consists in building up a scientifically literate society, able to participate in and support scientific and technological developments and their implications for educational settings. Neurological disorders account for 35% of all diseases. PE could have a positive impact on the lives of people affected by neurological diseases. METHOD: This review evaluates the role of PE in dementia, stroke, epilepsy, multiple sclerosis, Parkinson's disease, migraine, neurogenetics, and amyotrophic lateral sclerosis. RESULTS AND CONCLUSIONS: PE can provide accessible information, support research activities and prevention through appropriate lifestyles, and increase knowledge and awareness of neurological disorders, improving their diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa