Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Blood ; 131(11): 1195-1205, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29295845

RESUMO

Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.


Assuntos
Envelhecimento/fisiologia , Rastreamento de Células , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Autoenxertos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Macaca
2.
Haematologica ; 105(7): 1813-1824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31582555

RESUMO

The classical model of hematopoietic hierarchies is being reconsidered on the basis of data from in vitro assays and single cell expression profiling. Recent experiments suggested that the erythroid lineage might differentiate directly from multipotent hematopoietic stem cells / progenitors or from a highly biased subpopulation of stem cells, rather than transiting through common myeloid progenitors or megakaryocyte-erythrocyte progenitors. We genetically barcoded autologous rhesus macaque stem and progenitor cells, allowing quantitative tracking of the in vivo clonal output of thousands of individual cells over time following transplantation. CD34+ cells were lentiviral-transduced with a high diversity barcode library, with the barcode in an expressed region of the provirus, allowing barcode retrieval from DNA or RNA, with each barcode representing an individual stem or progenitor cell clone. Barcode profiles from bone marrow CD45-CD71+ maturing nucleated red blood cells were compared with other lineages purified from the same bone marrow sample. There was very high correlation of barcode contributions between marrow nucleated red blood cells and other lineages, with the highest correlation between nucleated red blood cells and myeloid lineages, whether at earlier or later time points post transplantation, without obvious clonal contributions from highly erythroid-biased or restricted clones. A similar profile occurred even under stressors such as aging or erythropoietin stimulation. RNA barcode analysis on circulating mature red blood cells followed over long time periods demonstrated stable erythroid clonal contributions. Overall, in this nonhuman primate model with great relevance to human hematopoiesis, we documented continuous production of erythroid cells from multipotent, non-biased hematopoietic stem cell clones at steady-state or under stress.


Assuntos
Eritropoese , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Células Cultivadas , Hematopoese , Macaca mulatta , Células-Tronco Multipotentes
3.
Mol Ther ; 27(9): 1586-1596, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31253582

RESUMO

Busulfan conditioning is utilized for hematopoietic stem cell (HSC) depletion in the context of HSC gene-therapy conditioning but may result in insufficient immunosuppression. In this study, we evaluated whether additional immunosuppression is required for efficient engraftment of gene-modified cells using a rhesus HSC lentiviral gene-therapy model. We transduced half of rhesus CD34+ cells with an enhanced green fluorescent protein (GFP)-encoding vector (immunogenic) and the other half with a γ-globin-encoding vector (no predicted immunogenicity). After autologous transplantation of both transduced cell populations following myeloablative busulfan conditioning (5.5 mg/kg/day for 4 days), we observed immunological rejection of GFP-transduced cells up to 3 months post-transplant and stable engraftment of γ-globin-transduced cells in two animals, demonstrating that ablative busulfan conditioning is sufficient for engraftment of gene-modified cells producing non-immunogenic proteins but insufficient to permit engraftment of immunogenic proteins. We then added immunosuppression with abatacept and sirolimus to busulfan conditioning and observed engraftment of both GFP- and γ-globin-transduced cells in two animals, demonstrating that additional immunosuppression allows for engraftment of gene-modified cells expressing immunogenic proteins. In conclusion, myeloablative busulfan conditioning should permit engraftment of gene-modified cells producing non-immunogenic proteins, while additional immunosuppression is required to prevent immunological rejection of a neoantigen.


Assuntos
Bussulfano/farmacologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Imunossupressores/farmacologia , Transgenes , Condicionamento Pré-Transplante , Animais , Expressão Gênica , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Macaca mulatta , Modelos Animais , Transdução Genética , gama-Globinas/genética
4.
Mol Ther ; 27(6): 1074-1086, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31023523

RESUMO

Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/virologia , Lentivirus/genética , Transdução Genética , Animais , Antígenos CD34/metabolismo , Células Clonais , Terapia Genética/efeitos adversos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Substâncias Luminescentes/metabolismo , Macaca mulatta , Mutagênese Insercional/genética , Regiões Promotoras Genéticas , Processamento de Proteína/genética , Sequências Repetidas Terminais/genética , Transplante Autólogo
5.
Br J Haematol ; 186(2): 286-299, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972754

RESUMO

Stress erythropoiesis and chronic inflammation in subjects with sickle cell disease (SCD) may have an impact on the bone marrow (BM) haematopoietic stem and progenitor cell (HSPC) quality and yield necessary for effective autologous, ex vivo HSPC gene therapy. BM from 19 subjects with SCD and five volunteers without SCD (non-SCD) was collected in different anticoagulants and processed immediately (day 0) or the following day (day 1). Inflammatory, contamination and aggregation markers within the mononuclear layer, and CD34, CD45 and Glycophorin-A (GPA) expression on HSPCs after CD34+ selection were analysed by conventional and imaging flow cytometry. Compared to non-SCD BM, multiple markers of inflammation, contamination (red cells, P < 0·01; platelets, P < 0·01) and aggregates (platelet/granulocytes, P < 0·01; mononuclear/red cells, P < 0·01) were higher in SCD BM. Total CD34+ cell count was lower in SCD BM (P < 0·05), however CD34+ count was higher in SCD BM when collected in acid citrate dextrose-A (ACDA) versus heparin (P < 0·05). Greater than 50% of CD34+ HSPCs from SCD BM are CD34dim due to higher erythroid lineage expression (P < 0·01) as single cell CD34+ CD45+ GPA+ (P < 0·01) and CD34+ CD45- GPA+ (P < 0·01) HSPCs. SCD BM is characterized by increased inflammation, aggregation and contamination contributing to significant differences in HSPC quality and yield compared to non-SCD BM.


Assuntos
Anemia Falciforme , Antígenos CD34/metabolismo , Eritropoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Adulto , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino
6.
Blood ; 126(24): 2632-41, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26492933

RESUMO

Ionizing irradiation is used routinely to induce myeloablation and immunosuppression. However, it has not been possible to evaluate the extent of ablation without invasive biopsy. For lymphoid recovery, peripheral blood (PB) lymphocytes (PBLs) have been used for analysis, but they represent <2% of cells in lymphoid tissues (LTs). Using a combination of single-photon emission computed tomography imaging and a radiotracer ((99m)Tc-labeled rhesus immunoglobulin G1 anti-CD4R1 (Fab')2), we sequentially imaged CD4(+) cell recovery in rhesus macaques following total body irradiation (TBI) and reinfusion of vector-transduced, autologous CD34(+) cells. Our results present for the first time a sequential, real-time, noninvasive method to evaluate CD4(+) cell recovery. Importantly, despite myeloablation of circulating leukocytes following TBI, total depletion of CD4(+) lymphocytes in LTs such as the spleen is not achieved. The impact of TBI on LTs and PBLs is discordant, in which as few as 32.4% of CD4(+) cells were depleted from the spleen. In addition, despite full lymphocyte recovery in the spleen and PB, lymph nodes have suboptimal recovery. This highlights concerns about residual disease, endogenous contributions to recovery, and residual LT damage following ionizing irradiation. Such methodologies also have direct application to immunosuppressive therapy and other immunosuppressive disorders, such as those associated with viral monitoring.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Tecido Linfoide/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único , Condicionamento Pré-Transplante , Animais , Medula Óssea/efeitos da radiação , Antígenos CD4/genética , Contagem de Linfócito CD4 , Sistemas Computacionais , Genes Reporter , Genes Sintéticos , Vetores Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Imunoglobulina G/genética , Lentivirus/genética , Linfonodos/imunologia , Linfonodos/efeitos da radiação , Tecido Linfoide/diagnóstico por imagem , Tecido Linfoide/efeitos da radiação , Macaca mulatta , Imagem Multimodal , Especificidade de Órgãos , Quimera por Radiação , Baço/imunologia , Baço/efeitos da radiação , Tomografia Computadorizada por Raios X , Transdução Genética , Transplante Autólogo , Irradiação Corporal Total
7.
Blood ; 118(25): 6580-90, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21989987

RESUMO

In this study, we used the rhesus macaque model to determine the impact that AMD3100 has on lymphocyte mobilization, both alone and in combination with G-CSF. Our results indicate that, unlike G-CSF, AMD3100 substantially mobilizes both B and T lymphocytes into the peripheral blood. This led to significant increases in the peripheral blood content of both effector and regulatory T-cell populations, which translated into greater accumulation of these cells in the resulting leukapheresis products. Notably, CD4(+)/CD25(high)/CD127(low)/FoxP3(+) Tregs were efficiently mobilized with AMD3100-containing regimens, with as much as a 4.0-fold enrichment in the leukapheresis product compared with G-CSF alone. CD8(+) T cells were mobilized to a greater extent than CD4(+) T cells, with accumulation of 3.7 ± 0.4-fold more total CD8+ T cells and 6.2 ± 0.4-fold more CD8(+) effector memory T cells in the leukapheresis product compared with G-CSF alone. Given that effector memory T-cell subpopulations may mediate less GVHD compared with other effector T-cell populations and that Tregs are protective against GVHD, our results indicate that AMD3100 may mobilize a GVHD-protective T-cell repertoire, which would be of benefit in allogeneic hematopoietic stem cell transplantation.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Benzilaminas , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Ciclamos , Sinergismo Farmacológico , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Leucaférese/métodos , Contagem de Linfócitos , Macaca mulatta , Receptores CXCR4/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
8.
Mol Ther ; 20(10): 1882-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22871664

RESUMO

Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models.


Assuntos
Vetores Genéticos/genética , HIV-1/genética , Células-Tronco Hematopoéticas , Transdução Genética , Animais , Antígenos CD34/metabolismo , Southern Blotting , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Transplante de Células-Tronco Hematopoéticas , Humanos , Macaca mulatta , Reação em Cadeia da Polimerase em Tempo Real , Vírus da Imunodeficiência Símia/genética , Transgenes
9.
Methods Mol Biol ; 2567: 63-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255695

RESUMO

The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.


Assuntos
Vetores Genéticos , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Antígenos CD34/genética , Vetores Genéticos/genética , Lentivirus/genética , Macaca mulatta , Transdução Genética
10.
Heliyon ; 9(9): e19435, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810095

RESUMO

Selective T-cell depletion prior to cell or organ transplantation is considered a preconditioning regimen to induce tolerance and immunosuppression. An immunotoxin consisting of a recombinant anti-CD3 antibody conjugated with diphtheria toxin was used to eliminate T-cells. It showed significant T-cell depletion activity in the peripheral blood and lymph nodes in animal models used in previous studies. To date, a comprehensive evaluation of T-cell depletion and CD3 proliferation for all lymphoid tissues has not been conducted. Here, two rhesus macaques were administered A-dmDT390-SCFBdb (CD3-IT) intravenously at 25 µg/kg twice daily for four days. Samples were collected one day prior to and four days post administration. Flow cytometry and immunofluorescence staining were used to evaluate treatment efficiency accurately. Our preliminary results suggest that CD3-IT treatment may induce higher depletion of CD3 and CD4 T-cells in the lymph nodes and spleen, but is ineffective in the colon and thymus. The data showed a better elimination tendency of CD4 T-cells in the B-cell zone relative to the germinal center in the lymph nodes. Further, CD3-IT treatment may lead to a reduction in germinal center T follicular helper CD4 cells in the lymph nodes compared to healthy controls. The number of proliferating CD3 T-cell indicated that repopulation in different lymphoid tissues may occur four days post treatment. Our results provide insights into the differential efficacy of CD3-IT treatment and T-cell proliferation post treatment in different lymphoid tissues. Overall, CD3-IT treatment shows potential efficacy in depleting T-cells in the periphery, lymph nodes, and spleen, making it a viable preconditioning regimen for cell or organ transplantation. Our pilot study provides critical descriptive statistics and can contribute to the design of larger future studies.

11.
Mol Ther Methods Clin Dev ; 28: 62-75, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620072

RESUMO

The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques. Two animals received lower busulfan dose and demonstrated lower vector marking levels compared with the third animal given a higher busulfan dose, despite similar busulfan pharmacokinetic analysis. We observed uni-lineage clonal engraftment at 1 month post-transplant, replaced by multilineage clones by 2 to 3 months in all animals. The initial multilineage clones in the first two animals were replaced by a second multilineage wave at 9 months; this clonal pattern disappeared at 13 months in the first animal, though was maintained in the second animal. The third animal maintained stable multilineage clones from 3 months to the most recent time point. In addition, busulfan animals exhibit more rapid HSPC clonal mixing across bone marrow sites and less CD16+ NK-biased clonal expansion compared with TBI animals. Therefore, busulfan conditioning regimens can variably impact the marrow niche, resulting in differences in clonal patterns with implications for HSPC gene therapies.

12.
Mol Ther Nucleic Acids ; 31: 452-465, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852088

RESUMO

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

13.
Nat Commun ; 14(1): 6291, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828021

RESUMO

Hematopoietic stem cell (HSC) gene therapy has curative potential; however, its use is limited by the morbidity and mortality associated with current chemotherapy-based conditioning. Targeted conditioning using antibody-drug conjugates (ADC) holds promise for reduced toxicity in HSC gene therapy. Here we test the ability of an antibody-drug conjugate targeting CD117 (CD117-ADC) to enable engraftment in a non-human primate lentiviral gene therapy model of hemoglobinopathies. Following single-dose CD117-ADC, a >99% depletion of bone marrow CD34 + CD90 + CD45RA- cells without lymphocyte reduction is observed, which results are not inferior to multi-day myeloablative busulfan conditioning. CD117-ADC, similarly to busulfan, allows efficient engraftment, gene marking, and vector-derived fetal hemoglobin induction. Importantly, ADC treatment is associated with minimal toxicity, and CD117-ADC-conditioned animals maintain fertility. In contrast, busulfan treatment commonly causes severe toxicities and infertility in humans. Thus, the myeloablative capacity of single-dose CD117-ADC is sufficient for efficient engraftment of gene-modified HSCs while preserving fertility and reducing adverse effects related to toxicity in non-human primates. This targeted conditioning approach thus provides the proof-of-principle to improve risk-benefit ratio in a variety of HSC-based gene therapy products in humans.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoconjugados , Animais , Bussulfano/farmacologia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Imunoconjugados/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Proteínas Proto-Oncogênicas c-kit/uso terapêutico , Macaca mulatta/imunologia
14.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273902

RESUMO

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

15.
J Virol ; 84(22): 11771-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844053

RESUMO

Retroviral vector-mediated gene therapy has been successfully used to correct genetic diseases. However, a number of studies have shown a subsequent risk of cancer development or aberrant clonal growths due to vector insertion near or within proto-oncogenes. Recent advances in the sequencing technology enable high-throughput clonality analysis via vector integration site (VIS) sequencing, which is particularly useful for studying complex polyclonal hematopoietic progenitor/stem cell (HPSC) repopulation. However, clonal repopulation analysis using the current methods is typically semiquantitative. Here, we present a novel system and standards for accurate clonality analysis using 454 pyrosequencing. We developed a bidirectional VIS PCR method to improve VIS detection by concurrently analyzing both the 5' and the 3' vector-host junctions and optimized the conditions for the quantitative VIS sequencing. The assay was validated by quantifying the relative frequencies of hundreds of repopulating HPSC clones in a nonhuman primate. The reliability and sensitivity of the assay were assessed using clone-specific real-time PCR. The majority of tested clones showed a strong correlation between the two methods. This assay permits high-throughput and sensitive assessment of clonal populations and hence will be useful for a broad range of gene therapy, stem cell, and cancer research applications.


Assuntos
Células-Tronco Hematopoéticas/virologia , Ensaios de Triagem em Larga Escala/métodos , Lentivirus/fisiologia , Análise de Sequência de DNA/métodos , Integração Viral , Animais , Células Cultivadas , Células Clonais , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Células-Tronco Hematopoéticas/citologia , Lentivirus/genética , Macaca mulatta
16.
Blood ; 114(12): 2530-41, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19602709

RESUMO

Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize peripheral blood stem cells by different mechanisms. A rhesus macaque model was used to compare plerixafor and G-CSF-mobilized CD34(+) cells. Three peripheral blood stem cell concentrates were collected from 3 macaques treated with G-CSF, plerixafor, or plerixafor plus G-CSF. CD34(+) cells were isolated by immunoselection and were analyzed by global gene and microRNA (miR) expression microarrays. Unsupervised hierarchical clustering of the gene expression data separated the CD34(+) cells into 3 groups based on mobilization regimen. Plerixafor-mobilized cells were enriched for B cells, T cells, and mast cell genes, and G-CSF-mobilized cells were enriched for neutrophils and mononuclear phagocyte genes. Genes up-regulated in plerixafor plus G-CSF-mobilized CD34(+) cells included many that were not up-regulated by either agent alone. Two hematopoietic progenitor cell miR, miR-10 and miR-126, and a dendritic cell miR, miR-155, were up-regulated in G-CSF-mobilized CD34(+) cells. A pre-B-cell acute lymphocytic leukemia miR, miR-143-3p, and a T-cell miR, miR-143-5p, were up-regulated in plerixafor plus G-CSF-mobilized cells. The composition of CD34(+) cells is dependent on the mobilization protocol. Plerixafor-mobilized CD34(+) cells include more B-, T-, and mast cell precursors, whereas G-CSF-mobilized cells have more neutrophil and mononuclear phagocyte precursors.


Assuntos
Antígenos CD34/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , MicroRNAs/genética , Animais , Fármacos Anti-HIV/farmacologia , Benzilaminas , Biomarcadores/metabolismo , Ciclamos , Combinação de Medicamentos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Macaca mulatta , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Cell Rep Med ; 2(4): 100247, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948577

RESUMO

Sickle cell disease (SCD) is caused by a 20A > T mutation in the ß-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact ß-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus ß-to-ßs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.


Assuntos
Anemia Falciforme/genética , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos/imunologia , Macaca mulatta/genética , Animais , Edição de Genes/métodos , Marcação de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Hemoglobina Falciforme/genética , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/metabolismo , Globinas beta/genética
18.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910976

RESUMO

Hematopoietic stem cell gene therapy for hemoglobin disorders, including sickle cell disease, requires high-efficiency lentiviral gene transfer and robust therapeutic globin expression in erythroid cells. Erythropoietin is a key cytokine for erythroid proliferation and differentiation (erythropoiesis), and truncated human erythropoietin receptors (thEpoR) have been reported in familial polycythemia. We reasoned that coexpression of thEpoR could enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous nonhuman primate transplantation models. We generated thEpoR by deleting 40 amino acids from the carboxyl terminus, allowing for erythropoietin-dependent enhanced erythropoiesis of gene-modified cells. We then designed lentiviral vectors encoding both thEpoR and B cell lymphoma/leukemia 11A (BCL11A)-targeting microRNA-adapted short hairpin RNA (shmiR BCL11A) driven by an erythroid-specific promoter. thEpoR expression enhanced erythropoiesis among gene-modified cells in vitro. We then transplanted lentiviral vector gene-modified CD34+ cells with erythroid-specific expression of both thEpoR and shmiR BCL11A and compared to cells modified with shmiR BCL11A only. We found that thEpoR enhanced shmiR BCL11A-based fetal hemoglobin (HbF) induction in both xenograft mice and rhesus macaques, whereas HbF induction with shmiR BCL11A only was robust, yet transient. thEpoR/shmiR BCL11A coexpression allowed for sustained HbF induction at 20 to 25% in rhesus macaques for 4 to 8 months. In summary, we developed erythroid-specific thEpoR/shmiR BCL11A-expressing vectors, enhancing HbF induction in xenograft mice and rhesus macaques. The sustained HbF induction achieved by addition of thEpoR and shmiR BCL11A may represent a viable gene therapy strategy for hemoglobin disorders.


Assuntos
Hemoglobina Fetal , Receptores da Eritropoetina , Animais , Células Eritroides , Hemoglobina Fetal/genética , Macaca mulatta , Camundongos , Receptores da Eritropoetina/genética , Proteínas Repressoras
19.
Mol Ther Methods Clin Dev ; 20: 703-715, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738325

RESUMO

Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.

20.
J Virol ; 83(19): 9854-62, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625395

RESUMO

Human immunodeficiency virus type 1 (HIV-1) vectors transduce rhesus blood cells poorly due to a species-specific block by TRIM5alpha and APOBEC3G, which target HIV-1 capsid and viral infectivity factor (Vif), respectively. We sought to develop a lentiviral vector capable of transducing both human and rhesus blood cells by combining components of both HIV-1 and simian immunodeficiency virus (SIV), including SIV capsid (sCA) and SIV Vif. A chimeric HIV-1 vector including sCA (chiHIV) was superior to the conventional SIV in transducing a human blood cell line and superior to the conventional HIV-1 vector in transducing a rhesus blood cell line. Among human CD34(+) hematopoietic stem cells (HSCs), the chiHIV and HIV-1 vectors showed similar transduction efficiencies; in rhesus CD34(+) HSCs, the chiHIV vector yielded superior transduction rates. In in vivo competitive repopulation experiments with two rhesus macaques, the chiHIV vector demonstrated superior marking levels over the conventional HIV-1 vector in all blood lineages (first rhesus, 15 to 30% versus 1 to 5%; second rhesus, 7 to 15% versus 0.5 to 2%, respectively) 3 to 7 months postinfusion. In summary, we have developed an HIV-1-based lentiviral vector system that should allow comprehensive preclinical testing of HIV-1-based therapeutic vectors in the rhesus macaque model with eventual clinical application.


Assuntos
Vetores Genéticos/genética , HIV-1/metabolismo , Lentivirus/genética , Vírus da Imunodeficiência Símia/metabolismo , Animais , Antígenos CD34/biossíntese , Capsídeo/metabolismo , Linhagem Celular , Eritrócitos/virologia , Células-Tronco Hematopoéticas/virologia , Humanos , Macaca mulatta , Modelos Genéticos , Mutação , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa