Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848549

RESUMO

In this paper, we report on a one-step catalyst-transfer macrocyclization (CTM) reaction, based on the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, selectively affording only cyclic structures. This route offers a versatile and efficient approach to synthesize aza[1n]paracyclophanes (APCs) featuring diverse functionalities and lumens. The method operates at mild reaction temperatures (40 °C) and short reaction times (∼2 h), delivering excellent isolated yields (>75% macrocycles) and up to 30% of a 6-membered cyclophane, all under nonhigh-dilution concentrations (35-350 mM). Structural insights into APCs reveal variations in product distribution based on different endocyclic substituents, with steric properties of exocyclic substituents having minimal influence on the macrocyclization. Aryl-type endocyclic substituents predominantly yield 6-membered macrocycles, while polycyclic aromatic units such as fluorene and carbazole favor 4-membered species. Experimental and computational studies support a proposed mechanism of ring-walking catalyst transfer that promotes the macrocycle formation. It has been found that the macrocyclization is driven by the formation of cyclic conformers during the oligomerization step favoring an intramolecular C-N bond formation that, depending on the cycle size, hinges on either preorganization effect or kinetic increase of the reductive elimination step or a combination of the two. The CTM process exhibits a "living" behavior, facilitating sequential synthesis of other macrocycles by introducing relevant monomers, thus providing a practical synthetic platform for chemical libraries. Notably, CTM operates both under diluted and concentrated regimes, offering scalability potential, unlike typical macrocyclization reactions usually operating in the 0.1-1 mM range.

2.
Chemistry ; 30(16): e202400127, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38446047

RESUMO

This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.

3.
Chemistry ; 29(63): e202302129, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37593905

RESUMO

The typical Birch reduction transforms arenes into cyclohexa-1,4-dienes by using alkali metals, an alcohol as a proton source, and an amine as solvent. Capitalizing on the strong photoreductive properties of peri-xanthenoxanthene (PXX), herein we report the photocatalyzed "Birch-type" reduction of acenes by employing visible blue light irradiation at room temperature in the presence of air. Upon excitation at 405 or 460 nm in the presence of a mixture of N,N-diisopropylethylamine (DIPEA) and trifluoromethanesulfonimide (HNTf2 ) in DMSO, PXX photocatalyzes the selective reduction of full-carbon acene derivatives (24-75 %). Immobilization of PXX onto polydimethylsiloxane (PDMS) beads (PXX-PDMS) allowed the use of the catalyst in heterogeneous batch reactions, giving 9-phenyl-9,10-dihydroanthracene in high yield (68 %). The catalyst could easily be recovered and reused, with no notable drop in performance observed after five reaction cycles. Integration of the PXX-PDMS beads into a microreactor enabled the reduction of acenes under continuous-flow conditions, thereby validating the sustainability and scalability of this heterogeneous-phase approach.

4.
Chemistry ; 29(11): e202203115, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36333273

RESUMO

Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2  S cm-1 and 10-2 -10-3  S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.

5.
Cell Commun Signal ; 21(1): 301, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904233

RESUMO

Metastasis is the main cause of deaths related to breast cancer. This is particular the case for triple negative breast cancer. No targeted therapies are reported as efficient until now. The extracellular matrix, in particular the fibronectin type I motif IGDQ, plays a major role in regulating cell migration prior metastasis formation. This motif interacts with specific integrins inducing their activation and the migratory signal transduction.Here, we characterized the migratory phenotype of MDA-MB-231 cells, using functionalized IGDQ-exposing surfaces, and compared it to integrin A5 and integrin B3 knock-down cells. A multiomic analysis was developed that highlighted the splicing factor SRSF6 as a putative master regulator of cell migration and of integrin intracellular trafficking. Indacaterol-induced inhibition of SRSF6 provoked: i) the inhibition of collective and IGDQ-mediated cell migration and ii) ITGA5 sequestration into endosomes and lysosomes. Upon further studies, indacaterol may be a potential therapy to prevent cell migration and reduce metastasis formation in breast cancer. Video Abstract.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Células MDA-MB-231 , Integrinas/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Adesão Celular , Fatores de Processamento de Serina-Arginina , Fosfoproteínas/metabolismo
6.
J Am Chem Soc ; 144(47): 21470-21484, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394460

RESUMO

Here, we report the synthesis of BN-doped graphenoid nanoribbons, in which peripheral carbon atoms at the zigzag edges have been selectively replaced by boron and nitrogen atoms as BN and NBN motifs. This includes high-yielding ring closure key steps that, through N-directed borylation reaction using solely BBr3, allow the planarization of meta-oligoarylenyl precursors, through the formation of B-N and B-C bonds, to give ter-, quater-, quinque-, and sexi-arylenyl nanoribbons. X-ray single-crystal diffraction studies confirmed the formation of the BN and NBN motifs and the zigzag-edged topology of the regularly doped ribbons. Steady-state absorption and emission investigations at room temperature showed a systematic bathochromic shift of the UV-vis absorption and emission envelopes upon elongation of the oligoarylenyl backbone, with the nanoribbon emission featuring a TADF component. All derivatives displayed phosphorescence at 77 K. Electrochemical studies showed that the π-extension of the peri-acenoacene framework provokes a lowering of the first oxidative event (from 0.83 to 0.40 V), making these nanoribbons optimal candidates to engineer p-type organic semiconductors.

7.
Angew Chem Int Ed Engl ; 61(38): e202202137, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35274798

RESUMO

This work describes the design and synthesis of a π-conjugated telluro[3,2-ß][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).

8.
Chemistry ; 27(12): 4124-4133, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33252163

RESUMO

Building on the MOF approach to prepare porous materials, herein we report the engineering of porous BN-doped materials using tricarboxylic hexaarylborazine ligands, which are laterally decorated with functional groups at the full-carbon 'inner shell'. Whilst an open porous 3D entangled structure could be obtained from the double interpenetration of two identical metal frameworks derived from the methyl substituted borazine, the chlorine-functionalised linker undergoes formation of a porous layered 2D honeycomb structure, as shown by single-crystal X-ray diffraction analysis. In this architecture, the borazine cores are rotated by 60° in alternating layers, thus generating large rhombohedral channels running perpendicular to the planes of the networks. An analogous unsubstituted full-carbon metal framework was synthesised for comparison. The resulting MOF revealed a crystalline 3D entangled porous structure, composed by three mutually interpenetrating networks, hence denser than those obtained from the borazine linkers. Their microporosity and CO2 uptake were investigated, with the porous 3D BN-MOF entangled structure exhibiting a large apparent BET specific surface area (1091 m2 g-1 ) and significant CO2 reversible adsorption (3.31 mmol g-1 ) at 1 bar and 273 K.

9.
Chem Soc Rev ; 49(23): 8400-8424, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33107504

RESUMO

There has never been a time when colour did not fascinate humanity, inspiring an unceasing manufacturing of a kaleidoscopic variety of dyes and pigments that brought about great revolutions in art, cosmetics, fashion, and our lifestyle as a whole. Over the centuries these tints evolved from raw earths to molecular masterpieces devised by expert chemists whose properties are now being exploited far beyond traditional applications. Mimicking Nature, a timely challenge, regards the preparation of innovative and highly efficient multi-coloured architectures structured at the molecular and nanoscopic scale with specific light-absorbing and light-emitting properties. This tutorial review provides an overview on the chemical strategies developed to engineer and customise these ingenious coloured nanostructures tackling the current performance of organic matter in cutting edge technological sectors, such as solar energy conversion.

10.
Chemistry ; 26(13): 2904-2913, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840314

RESUMO

The engineering of crystalline molecular solids through the simultaneous combination of distinctive non-covalent interactions is an important field of research, as it could allow chemist to prepare materials depicting multi-responsive properties. It is in this context that, pushed by a will to expand the chemical space of chalcogen-bonding interactions, a concept is put forward for which chalcogen- and halogen-bonding interactions can be used simultaneously to engineer multicomponent co-crystals. Through the rational design of crystallizable molecules, chalcogenazolo pyridine scaffold (CGP) modules were prepared that, bearing either a halogen-bond acceptor or donor at the 2-position, can interact with suitable complementary molecular modules undergoing formation of supramolecular polymers at the solid state. The recognition reliability of the CGP moiety to form chalcogen-bonded dimers allows the formation of heteromolecular supramolecular polymers through halogen-bonding interactions, as confirmed by single-crystal X-ray diffraction analysis.

11.
Chemistry ; 26(29): 6608-6621, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32023358

RESUMO

In this work, a comprehensive account of the authors' synthetic efforts to prepare borazino-doped hexabenzocoronenes by using the Friedel-Crafts-type electrophilic aromatic substitution is reported. Hexafluoro-functionalized aryl borazines, bearing an ortho fluoride leaving group on each of the N- and B-aryl rings, was shown to lead to cascade-type electrophilic aromatic substitution events in the stepwise C-C bond formation, giving higher yields of borazinocoronenes than those obtained with borazine precursors bearing fluoride leaving groups at the ortho positions of the B-aryl substituents. By using this pathway, an unprecedented boroxadizine-doped PAH featuring a gulf-type periphery could be isolated, and its structure proven by single-crystal X-ray diffraction analysis. Mechanistic studies on the stepwise Friedel-Crafts-type cyclization suggest that the mechanism of the planarization reaction proceeds through extension of the π system. To appraise the doping effect of the boroxadizine unit on the optoelectronic properties of topology-equivalent molecular graphenes, the all-carbon and pyrylium PAH analogues, all featuring a gulf-type periphery, were also prepared. As already shown for the borazino-doped hexabenzocoronene, the replacement of the central benzene ring by its B3 N2 O congener widens the HOMO-LUMO gap and dramatically enhances the fluorescence quantum yield.

12.
J Org Chem ; 85(5): 3454-3464, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027511

RESUMO

The replacement of carbon atoms at the zigzag periphery of a benzo[fg]tetracenyl derivative with an NBN atomic triad allows the formation of heteroatom-doped polycyclic aromatic hydrocarbon (PAH) isosteres, which expose BN mimics of the amidic NH functions. Their ability to form H-bonded complexes has never been touched so far. Herein, we report the first solution recognition studies of peripherally NBN-doped PAHs to form H-bonded DD·AA- and ADDA·DAAD-type complexes with suitable complementary H-bonding acceptor partners. The first determination of Ka in solution showed that the 1:1 association strength is around 27 ± 1 M-1 for the DD·AA complexes in C6D6, whereas it rises to 1820 ± 130 M-1 for the ADDA·DAAD array in CDCl3. Given the interest of BN-doped polyaromatic hydrocarbons in supramolecular and materials chemistry, it is expected that these findings will open new possibilities to design novel materials, where the H-bonding properties of peripheral NH hydrogens could serve as anchors to tailor the organizational properties of PAHs.

13.
Nano Lett ; 19(11): 7681-7690, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31593477

RESUMO

We report on metal-assisted chemical etching of Si for the synthesis of mechanically stable, hybrid crystallographic orientation Si superstructures with high aspect ratio, above 200. This method sustains high etching rates and facilitates reproducible results. The protocol enables the control of the number, angle, and location of the kinks via successive etch-quench sequences. We analyzed relevant Au mask catalyst features to systematically assess their impact on a wide spectrum of etched morphologies that can be easily attained and customized by fine-tuning of the critical etching parameters. For instance, the designed kinked Si nanowires can be incorporated in biological cells without affecting their viability. An accessible numerical model is provided to explain the etch profiles and the physicochemical events at the Si/Au-electrolyte interface and offers guidelines for the development of finite-element modeling of metal-assisted Si chemical etching.

14.
Angew Chem Int Ed Engl ; 59(10): 4106-4114, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31889372

RESUMO

Herein we report an efficient synthesis to prepare O-doped nanographenes derived from the π-extension of pyrene. The derivatives are highly fluorescent and feature low oxidation potentials. Using electrooxidation, crystals of cationic mixed-valence (MV) complexes were grown in which the organic salts organize into face-to-face π-stacks, a favorable solid-state arrangement for organic electronics. Variable-temperature electron paramagnetic resonance (EPR) measurements and relaxation studies suggest a strong electron delocalization along the longitudinal axis of the columnar π-stacking architectures. Electric measurements of single crystals of the MV salts show a semiconducting behavior with a remarkably high conductivity at room temperature. These findings support the notion that π-extension of heteroatom-doped polycyclic aromatic hydrocarbons is an attractive approach to fabricate nanographenes with a broad spectrum of semiconducting properties and high charge mobilities.

15.
Chemistry ; 25(71): 16179-16200, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31491049

RESUMO

Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.


Assuntos
DNA/química , Peptídeos/química , Proteínas/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Nanoestruturas/química , Porosidade
16.
J Org Chem ; 84(14): 9101-9116, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31282157

RESUMO

In this paper, we describe synthetic routes for preparing a novel switchable BNC-based chromophore, composed of a borazine core peripherally functionalized with azobenzene moieties. Capitalizing on the Pd-catalyzed Suzuki cross-coupling reaction between a tris-triflate borazine and an organoboron azobenzene derivative, a photoswtichable azo-borazine derivative was successfully prepared. The molecule showed reversible E/Z photoisomerization upon irradiation at the maximum of the intense π-π* absorption feature (360 nm). X-ray crystallographic investigations revealed a nonplanar orientation of the three azobenzene moieties and the trans configuration of the -N═N- bonds. Building on the synthetic versatility of the borazine-azobenzene derivative, we used this photoactive scaffold to engineer soluble BN-doped polythiophene polymers. Photophysical characterization performed in solvents of different polarity suggested that the polymer undergoes intramolecular charge transfer (ICT).

17.
Chemistry ; 24(21): 5439-5443, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29194816

RESUMO

In this work, we have programmed and synthesized a recognition motif constructed around a chalcogenazolo-pyridine scaffold (CGP) that, through the formation of frontal double chalcogen-bonding interactions, associates into dimeric EX-type complexes. The reliability of the double chalcogen-bonding interaction has been shown at the solid-state by X-ray analysis, depicting the strongest recognition persistence for a Te-congener. The high recognition fidelity, chemical and thermal stability and easy derivatization at the 2-position makes CGP a convenient motif for constructing supramolecular architectures through programmed chalcogen-bonding interactions.

18.
Chemistry ; 24(60): 16136-16148, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30133049

RESUMO

The use of a template that bears pre-programmed receptor sites for selectively accommodating chromophores at given positions is an attractive approach for engineering artificial-light-harvesting systems. Indulging this line of thought, this work tackles the creation of tailored antenna architectures with yellow, red and blue chromophores, exploiting three dynamic covalent reactions simultaneously, namely disulfide exchange, acyl hydrazone, and boronic ester formations. The effect of various structural modifications, such as the chromophores as well as their spatial organization (distance, orientation, order) on the energy transfer within the antennas was studied by means of steady-state UV/Vis absorption and fluorescence spectroscopies. This systematic study allowed for a significant improvement of the energy-transfer efficiencies to a noticeable 22 and 15 % for the yellow and red donors, respectively, across the chromophores to the blue acceptor. Metadynamics simulations suggested that the conformational properties of the antennas are driven by intramolecular chromophoric stacking interactions that, upon forcing the α-helix to fold on itself, annul any effects deriving from the programming of the spatial arrangement of the receptor sides in the peptide backbone.


Assuntos
Corantes Fluorescentes/química , Complexos de Proteínas Captadores de Luz/química , Peptídeos/química , Ácidos Borônicos/química , Dissulfetos/química , Transferência de Energia , Ésteres/química , Hidrazonas/química , Interações Hidrofóbicas e Hidrofílicas , Luz , Conformação Molecular , Simulação de Dinâmica Molecular , Fotossíntese , Solventes
19.
Chemistry ; 24(38): 9565-9571, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29701892

RESUMO

We report on the synthesis of pyridine-terminated borazine derivatives, their molecular self-assembly as well as the electronic properties investigated on silver and copper surfaces by means of scanning tunneling microscopy and X-ray photoelectron spectroscopy. The introduction of pyridine functionalities allows us to achieve distinct supramolecular architectures with control of the interdigitation of the molecules by surface templating. On silver surfaces, the borazine derivatives arrange in a dense-packed hexagonal structure through van der Waals and H-bonding interactions, whereas on Cu(111), the molecules undergo metal coordination. The porosity and coordination symmetry of the reticulated structure depends on the stoichiometric ratio between copper adatoms and the borazine ligands, permitting an unusual three-fold coordinated Cu-pyridyl network. Finally, spectroscopy measurements indicate that the borazine core is electronically decoupled from the metallic substrate. We thus demonstrate that BNC-containing molecular units can be integrated into stable metal-coordination architectures on surfaces, opening pathways to patterned, BN-doped sheets with specific functionalities, for example, regarding the adsorption of polar guest gases.

20.
Chemistry ; 24(17): 4382-4389, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29232478

RESUMO

Here we describe the synthesis of electron-rich PXX derivatives in which the energy levels of the excited states have been rigidly shifted through the insertion of imide groups. This has allowed the development of a new series of oxygen-doped photoredox-active chromophores with improved oxidizing and reducing properties. Capitalizing on the dehalogenation of organic halides as a model reaction, we could investigate the photooxidative and photoreductive potential of these molecules in model chemical transformations. Depending on the substrate, solvent and dye the reaction mechanism can follow different paths. This prompted us to consider the first chemoselective transformation protocol, in which two different C-Br bonds could be chemoselectively reacted through the sequential photoactivation of two different colorants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa