RESUMO
Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.
Assuntos
Hipergravidade/efeitos adversos , Roedores/fisiologia , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Humanos , Larva/patogenicidade , Larva/efeitos da radiação , Camundongos , Modelos Animais , Xenopus laevis/fisiologiaRESUMO
The identification of safe and easily-determined-inflight biomarkers to monitor the immune system of astronauts is mandatory to ensure their well-being and the success of the missions. In this report, we evaluated the relevance of two biomarkers whose determination could be easily implemented in a spacecraft in the near future by using bedridden volunteers as a ground-based model of the microgravity of spaceflight. Our data confirm the relevance of the neutrophil to lymphocyte ratio (NLR) and suggest platelet to lymphocyte ratio (PLR) monitoring to assess long-lasting immune diseases. We recommend coupling these ratios to other biomarkers, such as the quantification of cytokines and viral load measurements, to efficiently detect immune dysfunction, determine when countermeasures should be applied to promote immune recovery, prevent the development of disease, and track responses to treatment.
Assuntos
Astronautas , Neutrófilos , Humanos , Repouso em Cama/efeitos adversos , Decúbito Inclinado com Rebaixamento da Cabeça , Estudos Retrospectivos , Linfócitos , BiomarcadoresRESUMO
Alterations of the immune system could seriously impair the ability to combat infections during future long-duration space missions. However, little is known about the effects of spaceflight on the B-cell compartment. Given the limited access to astronaut samples, we addressed this question using blood samples collected from 20 healthy male volunteers subjected to long-duration bed rest, an Earth-based analog of spaceflight. Hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, four B-cell subsets, immunoglobulin isotypes, six cytokines involved in inflammation, cortisone and cortisol were quantified at five time points. Tibia microarchitecture was also studied. Moreover, we investigated the efficiency of antioxidant supplementation with a cocktail including polyphenols, omega 3, vitamin E and selenium. Our results show that circulating hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, and B-cell subsets were not affected by bed rest. Cytokine quantification suggested a lower systemic inflammatory status, supported by an increase in serum cortisone, during bed rest. These data confirm the in vivo hormonal dysregulation of immunity observed in astronauts and show that bed rest does not alter B-cell homeostasis. This lack of an impact of long-term bed rest on B-cell homeostasis can, at least partially, be explained by limited bone remodeling. None of the evaluated parameters were affected by the administration of the antioxidant supplement. The non-effectiveness of the supplement may be because the diet provided to the non-supplemented and supplemented volunteers already contained sufficient antioxidants. Given the limitations of this model, further studies will be required to determine whether B-cell homeostasis is affected, especially during future deep-space exploration missions that will be of unprecedented durations.