Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167738

RESUMO

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Assuntos
Líquidos Iônicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
2.
J Enzyme Inhib Med Chem ; 38(1): 2277135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955306

RESUMO

Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Oseltamivir/farmacologia , Oseltamivir/química , Neuraminidase , Simulação de Acoplamento Molecular , Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Glicosídeo Hidrolases
3.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234966

RESUMO

To address drug resistance to influenza virus neuraminidase inhibitors (NAIs), a series of novel boron-containing N-substituted oseltamivir derivatives were designed and synthesized to target the 150-cavity of neuraminidase (NA). In NA inhibitory assays, it was found that most of the new compounds exhibited moderate inhibitory potency against the wild-type NAs. Among them, compound 2c bearing 4-(3-boronic acid benzyloxy)benzyl group displayed weaker or slightly improved activities against group-1 NAs (H1N1, H5N1, H5N8 and H5N1-H274Y) compared to that of oseltamivir carboxylate (OSC). Encouragingly, 2c showed 4.6 times greater activity than OSC toward H5N1-H274Y NA. Moreover, 2c exerted equivalent or more potent antiviral activities than OSC against H1N1, H5N1 and H5N8. Additionally, 2c demonstrated low cytotoxicity in vitro and no acute toxicity at the dose of 1000 mg/kg in mice. Molecular docking of 2c was employed to provide a possible explanation for the improved anti-H274Y NA activity, which may be due to the formation of key additional hydrogen bonds with surrounding amino acid residues, such as Arg152, Gln136 and Val149. Taken together, 2c appeared to be a promising lead compound for further optimization.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Aminoácidos/farmacologia , Animais , Antivirais/química , Boro/farmacologia , Ácidos Borônicos/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuraminidase , Oseltamivir/análogos & derivados , Oseltamivir/química
4.
Pharmaceutics ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065650

RESUMO

The limited range of available flu treatments due to virus mutations and drug resistance have prompted the search for new therapies. RNA-dependent RNA polymerase (RdRp) is a heterotrimeric complex of three subunits, i.e., polymerase acidic protein (PA) and polymerase basic proteins 1 and 2 (PB1 and PB2). It is widely recognized as one of the most promising anti-flu targets because of its critical role in influenza infection and high amino acid conservation. In particular, the disruption of RdRp complex assembly through protein-protein interaction (PPI) inhibition has emerged as a valuable strategy for discovering a new therapy. Our group previously identified the 3-cyano-4,6-diphenyl-pyridine core as a privileged scaffold for developing PA-PB1 PPI inhibitors. Encouraged by these findings, we synthesized a small library of pyridine and pyrimidine derivatives decorated with a thio-N-(m-tolyl)acetamide side chain (compounds 2a-n) or several amino acid groups (compounds 3a-n) at the C2 position. Interestingly, derivative 2d, characterized by a pyrimidine core and a phenyl and 4-chloro phenyl ring at the C4 and C6 positions, respectively, showed an IC50 value of 90.1 µM in PA-PB1 ELISA, an EC50 value of 2.8 µM in PRA, and a favorable cytotoxic profile, emerging as a significant breakthrough in the pursuit of new PPI inhibitors. A molecular modeling study was also completed as part of this project, allowing us to clarify the biological profile of these compounds.

5.
Antiviral Res ; 230: 105980, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117284

RESUMO

In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against highly pathogenic avian influenza viruses (HPAIVs) both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against HPAIV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.


Assuntos
Antivirais , Sinergismo Farmacológico , Vírus da Influenza A , Oseltamivir , Pirazinas , Proteínas Virais , Replicação Viral , Oseltamivir/farmacologia , Oseltamivir/análogos & derivados , Animais , Antivirais/farmacologia , Humanos , Replicação Viral/efeitos dos fármacos , Pirazinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Embrião de Galinha , Proteínas Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Amidas/farmacologia , Dibenzotiepinas/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Zanamivir/farmacologia , Triazinas/farmacologia , Piridonas/farmacologia , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Morfolinas/farmacologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cães , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Linhagem Celular , Células Madin Darby de Rim Canino
6.
Eur J Med Chem ; 277: 116737, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39153334

RESUMO

Influenza viruses (IV) are single-stranded RNA viruses with a negative-sense genome and have the potential to cause pandemics. While vaccines exist for influenza, their protection is only partial. Additionally, there is only a limited number of approved anti-IV drugs, which are associated to emergence of drug resistance. To address these issues, for years we have focused on the development of small-molecules that can interfere with the heterodimerization of PA and PB1 subunits of the IV RNA-dependent RNA polymerase (RdRP). In this study, starting from a cycloheptathiophene-3-carboxamide compound that we recently identified, we performed iterative cycles of medicinal chemistry optimization that led to the identification of compounds 43 and 45 with activity in the nanomolar range against circulating A and B strains of IV. Mechanistic studies demonstrated the ability of 43 and 45 to interfere with viral RdRP activity by disrupting PA-PB1 subunits heterodimerization and to bind to the PA C-terminal domain through biophysical assays. Most important, ADME studies of 45 also showed an improvement in the pharmacokinetic profile with respect to the starting hit.


Assuntos
Antivirais , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/química , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Testes de Sensibilidade Microbiana , Cães
7.
Eur J Med Chem ; 252: 115275, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931117

RESUMO

To yield potent neuraminidase inhibitors with improved drug resistance and favorable drug-like properties, two series of novel oseltamivir derivatives targeting the 150-cavity of neuraminidase were designed, synthesized, and biologically evaluated. Among the synthesized compounds, the most potent compound 43b bearing 3-floro-4-cyclopentenylphenzyl moiety exhibited weaker or slightly improved inhibitory activity against wild-type neuraminidases (NAs) of H1N1, H5N1, and H5N8 compared to oseltamivir carboxylate (OSC). Encouragingly, 43b displayed 62.70- and 5.03-fold more potent activity than OSC against mutant NAs of H5N1-H274Y and H1N1-H274Y, respectively. In cellular antiviral assays, 43b exerted equivalent or more potent activities against H1N1, H5N1, and H5N8 compared to OSC with no significant cytotoxicity up to 200 µM. Notably, 43b displayed potent antiviral efficacy in the embryonated egg model, in which achieved a protective effect against H5N1 and H5N8 similar to OSC. Molecular docking studies were implemented to reveal the binding mode of 43b in the binding pocket. Moreover, 43b possessed improved physicochemical properties and ADMET properties compared to OSC by in silico prediction. Taken together, 43b appeared to be a promising lead compound for further investigation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Oseltamivir/química , Neuraminidase , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antivirais/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/metabolismo , Guanidinas/farmacologia , Farmacorresistência Viral
8.
J Med Chem ; 65(17): 11550-11573, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939763

RESUMO

With our continuous endeavors in seeking neuraminidase (NA) inhibitors, we reported herein three series of novel oseltamivir amino derivatives with the goal of exploring the druggable chemical space inside the 150-cavity of influenza virus NAs. Among them, around half of the compounds in series C were demonstrated to be better inhibitors against both wild-type and oseltamivir-resistant group-1 NAs than oseltamivir carboxylate (OSC). Notably, compounds 12d, 12e, 15e, and 15i showed more potent or equipotent antiviral activity against H1N1, H5N1, and H5N8 viruses compared to OSC in cellular assays. Furthermore, compounds 12e and 15e exhibited high metabolic stability in human liver microsomes (HLMs) and low inhibitory effect on main cytochrome P450 (CYP) enzymes, as well as low acute/subacute toxicity and certain antiviral efficacy in vivo. Also, pharmacokinetic (PK) and molecular docking studies were performed. Overall, 12e and 15e possess great potential to serve as anti-influenza candidates and are worthy of further investigation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Antivirais/química , Antivirais/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Neuraminidase , Oseltamivir/química , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 221: 113494, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962311

RESUMO

In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 µM) and anti-IAV activity (EC50 = 16 µM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 µM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.


Assuntos
Antivirais/farmacologia , Multimerização Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazóis/farmacologia , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Chlorocebus aethiops , Cães , Desenho de Fármacos , Células HEK293 , Humanos , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Pirimidinas/síntese química , SARS-CoV-2/efeitos dos fármacos , Triazóis/síntese química , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa