RESUMO
FTIR and Raman spectra analysis of pure dipropylsulfoxide (DPSO), binary mixtures of DPSO/CCl(4), and DPSO/water has been first performed. The complex pattern of spectra has been explained on the basis of molecular interactions between DPSO and other molecules and, in the aqueous solutions, the role of both hydrophilic and hydrophobic interactions have been discussed depending on the concentrations. The changes in the intensities and in the frequencies of DPSO bands on concentration have been considered. The curve fitting procedure has been performed for both SO and C-H stretching region, and, on the basis of deconvolution results different type of molecular interactions have been considered. Density function theory DFT/(B3LYP) method has been used to determine the optimized geometry for free DPSO and for 1 DPSO:1 water complex. On the basis of the 6-31+G(d) quality sets parameters, the DFT calculated bond parameters and harmonic vibrations are in a very good agreement with experimental data.
Assuntos
Análise Espectral Raman , Sulfóxidos/química , Vibração , Tetracloreto de Carbono/química , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Água/químicaRESUMO
FT IR and Raman spectroscopic studies of pure diethylsulfoxide (DESO) in the liquid and in the solid states and its solutions in various solvents have been performed. Analysis of SO- and CH-stretching regions in a wide range of concentration shows that the bands may be fitted satisfactorily by considering seven components. In addition, fundamental frequencies have been assigned using ab initio calculations at the RHF/3-21G* levels. The results obtained confirm a viewpoint on a self-associative structure of DESO, and support the hypothesis of the existence of different types of intermolecular associates including both dipole-dipole and hydrogen bonding mechanisms.
Assuntos
Sulfóxidos/química , Crioprotetores/química , Dimetil Sulfóxido/química , Ligação de Hidrogênio , Estrutura Molecular , Soluções , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral RamanRESUMO
Intracranial hemangiopericytomas (HPCs) are rare tumors and their radiological appearance resembles that of meningiomas, especially meningothelial meningiomas. To increase the knowledge on the biochemical composition of this type of tumor for better diagnosis and prognosis, we performed a molecular study using ex vivo high resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) perfomed on HPC and peritumoral edematous tissues. Moreover, to help in the discrimination between HPC and meningothelial meningioma we compared the ex vivo HR-MAS spectra of samples from one patient with HPC and 5 patients affected by meningothelial meningioma. Magnetic resonance imaging (MRI), in vivo localized single voxel 1H-MRS was also performed on the same patients prior to surgery and the in vivo and ex vivo MRS spectra were compared. We observed the presence of OH-butyrate, together with glucose in HPC and a low amount of N-acetylaspartate in the edema, that may reflect neuronal alteration responsible for associated epilepsy. Many differences between HPC and meningothelial meningioma were identified. The relative ratios of myo-inositol, glucose and gluthatione with respect to glutamate are higher in HPC compared to meningioma; whereas the relative ratios of creatine, glutamine, alanine, glycine and choline-containing compounds with respect to glutamate are lower in HPC compared to meningioma. These data will be useful to improve the interpretation of in vivo MRS spectra resulting in a more accurate diagnosis of these rare tumors.
Assuntos
Edema Encefálico/diagnóstico , Edema Encefálico/metabolismo , Hemangiopericitoma/diagnóstico , Hemangiopericitoma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/metabolismo , Ácido 3-Hidroxibutírico/análise , Ácido 3-Hidroxibutírico/metabolismo , Alanina/análise , Alanina/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Colina/análise , Colina/metabolismo , Creatina/análise , Creatina/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Glutationa/análise , Glutationa/metabolismo , Glicina/análise , Glicina/metabolismo , Humanos , Inositol/análise , Inositol/metabolismo , Imageamento por Ressonância Magnética , Meningioma/diagnósticoRESUMO
Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the ß-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.
Assuntos
Durapatita/química , Lactoferrina/química , Nanopartículas/química , Adsorção , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Eletricidade EstáticaRESUMO
It is well recognized that a high dietary intake of long-chain polyunsaturated fatty acids (LC-PUFA) has profound benefits on health and prevention of chronic diseases. In particular, in recent years there has been a dramatic surge of interest in the health effects of n-3 LC-PUFA derived from fish, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Notwithstanding, the metabolic fate and the effects of these fatty acids once inside the cell has seldom been comprehensively investigated. Using cultured neonatal rat cardiomyocytes as model system we have investigated for the first time, by means of high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy in combination with gas chromatography (GC), the modification occurring in the cell lipid environment after EPA and DHA supplementation. The most important difference between control and n-3 LC-PUFA-supplemented cardiomyocytes highlighted by HR-MAS NMR spectroscopy is the increase of signals from mobile lipids, identified as triacylglycerols (TAG). The observed increase of mobile TAG is a metabolic response to n-3 LC-PUFA supplementation, which leads to an increased lipid storage. The sequestration of mobile lipids in lipid bodies provides a deposit of stored energy that can be accessed in a regulated fashion according to metabolic need. Interestingly, while n-3 LC-PUFA supplementation to neonatal rat cardiomyocytes causes a huge variation in the cell lipid environment, it does not induce detectable modifications in water-soluble metabolites, suggesting negligible interference with normal metabolic processes.
Assuntos
Cromatografia Gasosa/métodos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Espectroscopia de Ressonância Magnética/instrumentação , Miócitos Cardíacos/metabolismo , Triglicerídeos/metabolismo , Animais , Técnicas de Cultura de Células , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Lipídeos , Fosfolipídeos/metabolismo , Ratos , Ratos WistarRESUMO
This is the first study on structural and ultrastructural changes taking place in Actinidia deliciosa kiwifruits affected by "elephantiasis syndrome", by means of DRIFT, FT-Raman, NMR, and SEM techniques. The fruits arising from elephantiasis-affected plants assume a round and smaller shape, limiting their marketing. Despite etiological studies on this disease, so far no information is available on the structural and ultrastructural characteristics of the fruits. The SEM and spectroscopic data showed significant modifications regarding the polysaccharide fraction in kiwifruits from diseased plants. The pectins seem to be the polysaccharide fraction more involved in the structural variations of the fruits. These structural and ultrastructural variations are related to the elephantiasis syndrome, and they could be adopted as markers for early diagnosis of the disease.
Assuntos
Actinidia/química , Doenças das Plantas , Frutas/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Polissacarídeos/análise , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Magnetic Resonance Spectroscopy visible mobile lipids are considered important markers in the diagnosis of human cancer and are thought to be closely involved in various aspects of tumour transformation, such as cell proliferation, necrosis, apoptosis, hypoxia and drug resistance. A method allowing the straightforward identification of the lipid classes contributing to the mobile lipids in human malignant tissues is highly advisable. Ex vivo High Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy was done directly on human cerebral, renal and colorectal malignant tissue specimens. A diffusion edited sequence, based on stimulated echo and bipolar gradient pulses, was used to characterize molecules with low diffusion rates, arising from mobile lipid components. Cholesterol, triglycerides and phosphatidylcholine are simultaneously detected and all contribute to the mobile lipid resonances present in malignant glioma and clear cell renal carcinoma tissue specimens spectra. On the contrary, papillary cell renal carcinoma spectrum is predominated by phosphatidylcholine resonances and that of colorectal adenocarcinoma is characterized by signals arising from triglycerides. Ex vivo diffusion edited High Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy, done on intact tissue, is a powerful analytical tool to obtain a simple and immediate identification of mobile lipid components. This can offer a significant contribution to better understanding their involvement in cancer tissues. Furthermore, ex vivo high resolution spectroscopic measurements allow to improve the interpretation of in vivo Magnetic Resonance spectra, increasing its clinical potentiality.
Assuntos
Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Neoplasias/patologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Neoplasias Colorretais/patologia , Difusão , Glioma/patologia , Humanos , Microscopia/métodos , Neoplasias/metabolismo , Triglicerídeos/químicaRESUMO
The chemical conjugation of bisphosphonates (BPs), specifically alendronate, to hydroxyapatite could be an effective means to impart to it fine-tuned bioactivity. Horse heart myoglobin (Mb), a well-characterized protein, has been adsorbed onto biomimetic hydroxyapatite nanocrystals (nHA) and onto the nHA/alendronate conjugate powdered samples. The obtained materials have potential use in bone implantation and as prospective drug-delivery devices. The kinetic absorption of Mb onto nHA is dramatically affected by its functionalization with alendronate. The covering of the nHA surface by alendronate inhibits the adsorption of myoglobin. The adsorption mechanisms of the protein were studied by spectroscopic techniques (UV-vis and surface-enhanced Raman spectroscopy). The results indicate that the protein changes conformation upon adsorption on the inorganic substrate. In particular, the interaction with nHA alters the coordination state of the iron in the heme through the formation of a hexacoordinated low-spin Mb heme, possibly involving the distal histidine. Instead, the covering of the nHA surface by alendronate does not adsorb the protein but preserves the coordination state of the heme moiety. This study could be of significance either in the field of biomaterials science, in particular, to fine tune a bone-specific drug delivery device and to test nHA as a new support for heterogeneous catalysis, improving the understating of enzyme immobilization.
Assuntos
Alendronato/química , Materiais Biomiméticos/química , Durapatita/química , Mioglobina/química , Nanopartículas/química , Adsorção , Animais , Cavalos , Cinética , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , EspectrofotometriaRESUMO
In this work the thermal properties of diethyl sulphoxide (Et2SO), as well as its cryoprotective ability are studied and related to other well-known cryoprotectant substances, like dimethyl sulphoxide (Me2SO). We have investigated the thermal properties of Et2SO/water systems using Differential Scanning Calorimetry at a very low heating/cooling rate (2 degrees C/min). Liquid/solid or glassy/crystalline transitions have been observed only for the solutions with content of Et2SO ranging from 5 up to 40% w/w and/or greater than 85%. In the 45-75% w/w Et2SO range we have found a noticeable glass-forming tendency and a great stability of the amorphous state to the reheating. In samples with Et2SO content ranging from 80 to 85%, we observed a great stability of the glass forming by cooling, but a lesser stability to the subsequent reheating. The glass-forming tendency of these solutions is discussed in terms of existing competitive interactions between molecules of Et2SO, on the one hand, and Et2SO and water molecules, on the other hand. The results are well explainable on the basis of the model structure of water/Et2SO solutions, deduced by Raman and infrared studies [J. Mol. Struct. 665 (2003) 285-292]. The cryoprotective ability of Et2SO on Escherichia coli survival has been also investigated, and a comparison among Et2SO and other widely used cryoprotectants, like Me2SO and glycerol has been done. Survival of E. coli, determined after freezing-thawing process, was maximal at 45% w/w Et2SO (more than 85% viability). It should be noted that at the same concentration the survival is only about 35% in the presence of Me2SO and not more than 15% in the presence of glycerol. These features are well consisted with the glass-forming properties of Et2SO.