Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immunity ; 47(3): 510-523.e4, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930661

RESUMO

Within the interleukin 1 (IL-1) cytokine family, IL-1 receptor accessory protein (IL-1RAcP) is the co-receptor for eight receptor-cytokine pairs, including those involving cytokines IL-1ß and IL-33. Unlike IL-1ß, IL-33 does not have a signaling complex that includes both its cognate receptor, ST2, and the shared co-receptor IL-1RAcP, which we now present here. Although the IL-1ß and IL-33 complexes shared structural features and engaged identical molecular surfaces of IL-1RAcP, these cytokines had starkly different strategies for co-receptor engagement and signal activation. Our data suggest that IL-1ß binds to IL-1RI to properly present the cytokine to IL-1RAcP, whereas IL-33 binds to ST2 in order to conformationally constrain the cognate receptor in an IL-1RAcP-receptive state. These findings indicate that members of the IL-1 family of cytokines use distinct molecular mechanisms to signal through their shared co-receptor, and they provide the foundation from which to design new therapies to target IL-33 signaling.


Assuntos
Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Interleucina-1/química , Proteína 1 Semelhante a Receptor de Interleucina-1/química , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/química , Interleucina-33/metabolismo , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética
2.
EMBO J ; 40(7): e106103, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522633

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Assuntos
Adesinas Bacterianas/química , Antígenos CD/química , Antígeno Carcinoembrionário/química , Moléculas de Adesão Celular/química , Adesinas Bacterianas/metabolismo , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Ligação Proteica , Streptococcus agalactiae/metabolismo
3.
J Biol Chem ; 299(6): 104789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149146

RESUMO

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Humanos , Linhagem Celular , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
4.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724755

RESUMO

Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.


Assuntos
Antígenos de Bactérias/fisiologia , Antígenos CD/fisiologia , Proteínas de Bactérias/fisiologia , Moléculas de Adesão Celular/fisiologia , Helicobacter pylori/fisiologia , Proteínas Oncogênicas/fisiologia , Antígenos CD/química , Proteínas de Bactérias/química , Moléculas de Adesão Celular/química , Células HEK293 , Humanos , Mutagênese , Multimerização Proteica , Transporte Proteico
5.
Adv Exp Med Biol ; 1149: 57-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016628

RESUMO

Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Helicobacter , Helicobacter pylori , Interações Hospedeiro-Patógeno , Estômago , Adesinas Bacterianas/metabolismo , Células Epiteliais/microbiologia , Humanos , Estômago/microbiologia
6.
Proc Natl Acad Sci U S A ; 112(44): 13561-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483485

RESUMO

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.


Assuntos
Antígenos CD/química , Moléculas de Adesão Celular/química , Multimerização Proteica , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Calorimetria/métodos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cristalografia por Raios X , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Granulócitos/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 290(20): 12929-40, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25837254

RESUMO

Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transformação Celular Neoplásica , Cristalografia por Raios X , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Relação Estrutura-Atividade
8.
Biochemistry ; 54(21): 3337-47, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25963096

RESUMO

The leading risk factor for gastric cancer in humans is infection by Helicobacter pylori strains that express and translocate the oncoprotein CagA into host epithelial cells. Once inside host cells, CagA interacts with ASPP2, which specifically stimulates p53-mediated apoptosis and reverses its pro-apoptotic function to promote ASPP2-dependent degradation of p53. The X-ray crystal structure of a complex between the N-terminal domain of CagA and a 56-residue fragment of ASPP2, of which 22 residues were resolved, was recently described. Here, we present biochemical and biophysical analyses of the interaction between the additional regions of CagA and ASPP2 potentially involved in this interaction. Using size exclusion chromatography-multiangle laser light scattering, circular dichroism, and nuclear magnetic resonance analyses, we observed that the ASPP2 region spanning residues 331-692, which was not part of the ASPP2 fragment used for crystallization, is intrinsically disordered in its unbound state. By surface plasmon resonance analysis and isothermal titration calorimetry, we found that a portion of this disordered region in ASPP2, residues 448-692, binds to the N-terminal domain of CagA. We also measured the affinity of the complex between the ASPP2 fragment composed of residues 693-918 and inclusive of the fragment used for crystallization and CagA. Additionally, we mapped the binding regions between ASPP2 and CagA using peptide arrays, demonstrating interactions between CagA and numerous peptides distributed throughout the ASPP2 protein sequence. Our results identify previously uncharacterized regions distributed throughout the protein sequence of ASPP2 as determinants of CagA binding, providing mechanistic insight into apoptosis reprogramming by CagA and potential new drug targets for H. pylori-mediated gastric cancer.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/metabolismo , Neoplasias Gástricas/microbiologia , Antígenos de Bactérias/química , Proteínas Reguladoras de Apoptose/química , Proteínas de Bactérias/química , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Neoplasias Gástricas/etiologia
9.
J Biol Chem ; 288(46): 32897-909, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24072713

RESUMO

CagA is a virulence factor that Helicobacter pylori inject into gastric epithelial cells through a type IV secretion system where it can cause gastric adenocarcinoma. Translocation is dependent on the presence of secretion signals found in both the N- and C-terminal domains of CagA and an interaction with the accessory protein CagF. However, the molecular basis of this essential protein-protein interaction is not fully understood. Herein we report, using isothermal titration calorimetry, that CagA forms a 1:1 complex with a monomer of CagF with nM affinity. Peptide arrays and isothermal titration calorimetry both show that CagF binds to all five domains of CagA, each with µM affinity. More specifically, a coiled coil domain and a C-terminal helix within CagF contacts domains II-III and domain IV of CagA, respectively. In vivo complementation assays of H. pylori with a double mutant, L36A/I39A, in the coiled coil region of CagF showed a severe weakening of the CagA-CagF interaction to such an extent that it was nearly undetectable. However, it had no apparent effect on CagA translocation. Deletion of the C-terminal helix of CagF also weakened the interaction with CagA but likewise had no effect on translocation. These results indicate that the CagA-CagF interface is distributed broadly across the molecular surfaces of these two proteins to provide maximal protection of the highly labile effector protein CagA.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Helicobacter pylori/química , Complexos Multiproteicos/química , Proteínas Oncogênicas/química , Adenocarcinoma/metabolismo , Adenocarcinoma/microbiologia , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia
10.
Annu Rev Cancer Biol ; 8: 97-113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882927

RESUMO

Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.

11.
EMBO J ; 28(18): 2846-57, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19696740

RESUMO

The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein-protein interactions with the TolB beta-propeller govern two conformational states that are adopted by the distal N-terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this 'TolA box' and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in beta-propeller proteins than currently realized.


Assuntos
Colicinas/química , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Sítio Alostérico , Clonagem Molecular , Reagentes de Ligações Cruzadas/farmacologia , Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenótipo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais
12.
FEBS J ; 290(20): 4852-4863, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37074066

RESUMO

RAF activation is a key step for signalling through the mitogen-activated protein kinase (MAPK) pathway. The SHOC2 protein, along with MRAS and PP1C, forms a high affinity, heterotrimeric holoenzyme that activates RAF kinases by dephosphorylating a specific phosphoserine. Recently, our research, along with that of three other teams, has uncovered valuable structural and functional insights into the SHOC2-MRAS-PP1C (SMP) holoenzyme complex. In this structural snapshot, we review SMP complex assembly, the dependency on the bound-nucleotide state of MRAS, the substitution of MRAS by the canonical RAS proteins and the roles of SHOC2 and MRAS on PP1C activity and specificity. Furthermore, we discuss the effect of several RASopathy mutations identified within the SMP complex and explore potential therapeutic approaches for targeting the SMP complex in RAS/RAF-driven cancers and RASopathies.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo , Holoenzimas/metabolismo
13.
Nat Commun ; 14(1): 2275, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080973

RESUMO

Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor the development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history.


Assuntos
Infecção Puerperal , Sepse , Infecções Estreptocócicas , Feminino , Humanos , Gravidez , Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Infecção Puerperal/epidemiologia , Infecção Puerperal/microbiologia , Sepse/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes
14.
J Biol Chem ; 286(6): 4871-81, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21127057

RESUMO

Superantigens (SAgs) are microbial toxins defined by their ability to activate T lymphocytes in a T cell receptor (TCR) ß-chain variable domain (Vß)-specific manner. Although existing structural information indicates that diverse bacterial SAgs all uniformly engage the Vß second complementarity determining region (CDR2ß) loop, the molecular rules that dictate SAg-mediated T cell activation and Vß specificity are not fully understood. Herein we report the crystal structure of human Vß2.1 (hVß2.1) in complex with the toxic shock syndrome toxin-1 (TSST-1) SAg, and mutagenesis of hVß2.1 indicates that the non-canonical length of CDR2ß is a critical determinant for recognition by TSST-1 as well as the distantly related SAg streptococcal pyrogenic exotoxin C. Frame work (FR) region 3 is uniquely critical for TSST-1 function explaining the fine Vß-specificity exhibited by this SAg. Furthermore, domain swapping experiments with SAgs, which use distinct domains to engage both CDR2ß and FR3/4ß revealed that the CDR2ß contacts dictate T lymphocyte Vß-specificity. These findings demonstrate that the TCR CDR2ß loop is the critical determinant for functional recognition and Vß-specificity by diverse bacterial SAgs.


Assuntos
Toxinas Bacterianas/química , Regiões Determinantes de Complementaridade/química , Enterotoxinas/química , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T alfa-beta/química , Superantígenos/química , Linfócitos T/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Linhagem Celular , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Cristalografia por Raios X , Enterotoxinas/genética , Enterotoxinas/imunologia , Exotoxinas/química , Exotoxinas/genética , Exotoxinas/imunologia , Humanos , Mutagênese , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Superantígenos/genética , Superantígenos/imunologia , Linfócitos T/imunologia
15.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36175670

RESUMO

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Assuntos
Síndrome de Noonan , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosfosserina/metabolismo , Proteína Fosfatase 1 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
16.
Biochemistry ; 50(13): 2394-402, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21332192

RESUMO

Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas/genética , Proteínas/metabolismo , Animais , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Commun Biol ; 4(1): 360, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742094

RESUMO

Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC' face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Antígenos CD/química , Antígenos CD/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Cristalografia por Raios X , Difusão Dinâmica da Luz , Fluorometria , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
18.
Biochemistry ; 49(43): 9256-68, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20836565

RESUMO

Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.


Assuntos
Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Termodinâmica , Animais , Calorimetria , Evolução Molecular Direcionada , Camundongos , Conformação Proteica , Proteínas/genética
19.
Biochem Soc Trans ; 36(Pt 6): 1409-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021565

RESUMO

The translocation of protein toxins into a cell relies on a myriad of protein-protein interactions. One such group of toxins are enzymatic E colicins, protein antibiotics produced by Escherichia coli in times of stress. These proteins subvert ordinary nutrient uptake mechanisms to enter the cell and unleash nuclease activity. We, and others, have previously shown that uptake of ColE9 (colicin E9) is dependent on engagement of the OM (outer membrane) receptors BtuB and OmpF as well as recruitment of the periplasmic protein TolB, forming a large supramolecular complex. Intriguingly, colicins bind TolB using a natively disordered region to mimic the interaction of TolB with Pal (peptidoglycan-associated lipoprotein). This is thought to trigger OM instability and prime the system for translocation. Here, we review key interactions in the assembly of this 'colicin translocon' and discuss the key role disorder plays in achieving uptake.


Assuntos
Membrana Celular/metabolismo , Colicinas/metabolismo , Colicinas/química , Mimetismo Molecular , Periplasma/metabolismo , Ligação Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa