Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neuroimage ; 235: 118010, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819610

RESUMO

BACKGROUND: The emerging field of ultra-high field MRI (UHF-MRI, 7 Tesla and higher) provides the opportunity to image human brains at a higher resolution and with higher signal-to-noise ratios compared to the more widely available 1.5 and 3T scanners. Scanning postmortem tissue additionally allows for greatly increased scan times and fewer movement issues leading to improvements in image quality. However, typical postmortem neuroimaging routines involve placing the tissue within plastic bags that leave room for susceptibility artifacts from tissue-air interfaces, inadequate submersion, and leakage issues. To address these challenges in postmortem imaging, a custom-built nonferromagnetic container was developed that allows whole brain hemispheres to be scanned at sub-millimeter resolution within typical head-coils. METHOD: The custom-built polymethylmethacrylaat container consists of a cylinder with a hemispheric side and a lid with valves on the adjacent side. This shape fits within common MR head-coils and allows whole hemispheres to be submerged and vacuum sealed within it reducing imaging artifacts that would otherwise arise at air-tissue boundaries. Two hemisphere samples were scanned on a Siemens 9.4T Magnetom MRI scanner. High resolution T2* weighted data was obtained with a custom 3D gradient echo (GRE) sequence and diffusion-weighted imaging (DWI) scans were obtained with a 3D kT-dSTEAM sequence along 48 directions. RESULTS: The custom-built container proved to submerge and contain tissue samples effectively and showed no interferences with MR scanning acquisition. The 3D GRE sequence provided high resolution isotropic T2* weighted data at 250 µm which showed a clear visualization of gray and white matter structures. DWI scans allowed for dense reconstruction of structural white matter connections via tractography. CONCLUSION: Using this custom-built container worked towards achieving high quality MR images of postmortem brain material. This procedure can have advantages over traditional schemes including utilization of a standardized protocol and the reduced likelihood of leakage. This methodology could be adjusted and used to improve typical postmortem imaging routines.


Assuntos
Autopsia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Artefatos , Autopsia/instrumentação , Encéfalo/fisiopatologia , Encefalopatias/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Razão Sinal-Ruído
2.
Neuropathol Appl Neurobiol ; 47(7): 958-966, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33969531

RESUMO

AIMS: Women are more vulnerable to Alzheimer's disease (AD) than men. We investigated (i) whether and at what age the AD hallmarks, that is, ß-amyloid (Aß) and hyperphosphorylated Tau (p-Tau) show sex differences; and (ii) whether such sex differences may occur in cognitively intact elderly individuals. METHODS: We first analysed the entire post-mortem brain collection of all non-demented 'controls' and AD donors from our Brain Bank (245 men and 403 women), for the presence of sex differences in AD hallmarks. Second, we quantitatively studied possible sex differences in Aß, Aß42 and p-Tau in the entorhinal cortex of well-matched female (n = 31) and male (n = 21) clinically cognitively intact elderly individuals. RESULTS: Women had significantly higher Braak stages for tangles and amyloid scores than men, after 80 years. In the cognitively intact elderly, women showed higher levels of p-Tau, but not Aß or Aß42, in the entorhinal cortex than men, and a significant interaction of sex with age was found only for p-Tau but not Aß or Aß42. CONCLUSIONS: Enhanced p-Tau in the entorhinal cortex may play a major role in the vulnerability to AD in women.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Idoso , Idoso de 80 Anos ou mais , Córtex Entorrinal/metabolismo , Feminino , Humanos , Masculino , Caracteres Sexuais , Proteínas tau/metabolismo
3.
Cell Mol Life Sci ; 77(17): 3467, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661560

RESUMO

After publication of the original article it came to the authors' attention that there was an error under the subheading Traumatic Brain Injury (TBI) as well as Table 1.

4.
Cell Mol Life Sci ; 77(17): 3279-3291, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31974655

RESUMO

Deep brain stimulation is used to alleviate symptoms of neurological and psychiatric disorders including Parkinson's disease, epilepsy, and obsessive-compulsive-disorder. Electrically stimulating limbic structures has been of great interest, and in particular, the region of the fornix. We conducted a systematic search for studies that reported clinical and preclinical outcomes of deep brain stimulation within the fornix up to July 2019. We identified 13 studies (7 clinical, 6 preclinical) that examined the effects of fornix stimulation in Alzheimer's disease (n = 9), traumatic brain injury (n = 2), Rett syndrome (n = 1), and temporal lobe epilepsy (n = 1). Overall, fornix stimulation can lead to decreased rates of cognitive decline (in humans), enhanced memory (in humans and animals), visuo-spatial memorization (in humans and animals), and improving verbal recollection (in humans). While the exact mechanisms of action are not completely understood, studies suggest fornix DBS to be involved with increased functional connectivity and neurotransmitter levels, as well as enhanced neuroplasticity.


Assuntos
Doença de Alzheimer/patologia , Lesões Encefálicas Traumáticas/patologia , Estimulação Encefálica Profunda , Epilepsia/patologia , Fórnice/fisiologia , Síndrome de Rett/patologia , Animais , Humanos , Memória , Transtornos da Memória/patologia
5.
Brain Struct Funct ; 227(7): 2231-2242, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35854141

RESUMO

The neuropathological substrates of Parkinson's disease (PD) patients with motor subtypes tremor-dominance (TD), non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid (AR) are not completely differentiated. While extensive pathological research has been conducted on neuronal tissue of PD patients, data have not been discussed in the context of mechanistic circuitry theories differentiating motor subtypes. It is, therefore, expected that a more specific and tailored management of PD symptoms can be accomplished by understanding symptom-specific neuropathological mechanisms with the detail histology can provide. This scoping review gives an overview of the literature comparing TD and nTD PD motor subtypes by clarify observed pathology with underlying physiological circuitry theories. Studies using an array of pathological examination techniques have shown significant differences between TD and nTD PD subtypes. nTD PD patients show higher neuronal loss, gliosis, extraneuronal melanin deposits, and neuroaxonal dystrophy in multiple subregions of the substantia nigra (SN) related to the overactivity of the indirect motor loop. TD patients show more severe cell loss specifically in medial SN subdivisions, and have damage in the retrorubral field A-8 that projects to the dorsolateral striatum and ventromedial thalamus in the direct motor loop. Pathological studies are consistent with neuroimaging data and support contemporary mechanistic circuitry theories of PD motor symptom genesis. Further multimodal neuroimaging and histological studies are required to validate and expand upon these findings.


Assuntos
Doença de Parkinson , Marcha , Humanos , Melaninas , Equilíbrio Postural , Substância Negra , Tremor
6.
Front Neurosci ; 16: 998932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278000

RESUMO

Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson's disease (PD) in recent decades, however, specific mechanisms behind DBS's efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters' dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.

7.
Mov Disord Clin Pract ; 8(2): 175-192, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33553487

RESUMO

BACKGROUND: The neuroanatomical substrates of Parkinson's disease (PD) with tremor-dominance (TD) and those with non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid (AR) are not fully differentiated. A better understanding of symptom specific pathoanatomical markers of PD subtypes may result in earlier diagnosis and more tailored treatment. Here, we aim to give an overview of the neuroimaging literature that compared PD motor subtypes. METHODS: A systematic literature review on neuroimaging studies of PD subtypes was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Search terms submitted to the PubMed database included: "Parkinson's disease", "MRI" and "motor subtypes" (TD, nTD, PIGD, AR). The results are first discussed from macro to micro level of organization (i.e., (1) structural; (2) functional; and (3) molecular) and then by applied imaging methodology. FINDINGS: Several neuroimaging methods including diffusion imaging and positron emission tomography (PET) distinguish specific PD motor subtypes well, although findings are mixed. Furthermore, our review demonstrates that nTD-PD patients have more severe neuroalterations compared to TD-PD patients. More specifically, nTD-PD patients have deficits within striato-thalamo-cortical (STC) circuitry and other thalamocortical projections related to cognitive and sensorimotor function, while TD-PD patients tend to have greater cerebello-thalamo-cortical (CTC) circuitry dysfunction. CONCLUSIONS: Based on the literature, STC and CTC circuitry deficits seem to be the key features of PD and the subtypes. Future research should make greater use of multimodal neuroimaging and techniques that have higher sensitivity in delineating subcortical structures involved in motor diseases.

8.
BMB Rep ; 54(6): 295-304, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162463

RESUMO

Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-ß production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. [BMB Reports 2021; 54(6): 295-304].


Assuntos
Doença de Alzheimer/complicações , Vias Neurais/patologia , Doenças Neurodegenerativas/patologia , Transtornos do Olfato/patologia , Condutos Olfatórios/patologia , Animais , Humanos , Doenças Neurodegenerativas/etiologia , Transtornos do Olfato/etiologia
9.
J Clin Med ; 9(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846987

RESUMO

Major depressive disorder (MDD) affects approximately 4.4% of the world's population. One third of MDD patients do not respond to routine psychotherapeutic and pharmacotherapeutic treatment and are said to suffer from treatment-resistant depression (TRD). Deep brain stimulation (DBS) is increasingly being investigated as a treatment modality for TRD. Although early case studies showed promising results of DBS, open-label trials and placebo-controlled studies have reported inconsistent outcomes. This has raised discussion about the correct interpretation of trial results as well as the criteria for patient selection, the choice of stimulation target, and the optimal stimulation parameters. In this narrative review, we summarize recent studies of the effectiveness of DBS in TRD and address the relation between the targeted brain structures and clinical outcomes. Elaborating upon that, we hypothesize that the effectiveness of DBS in TRD can be increased by a more personalized and symptom-based approach. This may be achieved by using resting-state connectivity mapping for neurophysiological subtyping of TRD, by using individualized tractography to help decisions about stimulation target and electrode placement, and by using a more detailed registration of symptomatic improvements during DBS, for instance by using 'experience sampling' methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa