RESUMO
Wheat is one of the main cereals grown around the world and is the basis for several foods such as bread, cakes and pasta. The consumption of these foods raises a concern with food safety, as toxic substances such as acrylamide, 5-hydroxymethylfurfural and polycyclic aromatic hydrocarbons are formed during their processing. To assess the occurrence of processing contaminants in wheat-based foods, a systematic search was carried out in four databases: PubMed, Embase, Web of Science and Scopus. Of the 1479 results, 28 were included for a meta-analysis. Most studies (69.7%) evaluated acrylamide in bread, cookies, and pasta, while PAHs (26.2%) were determined mainly in wheat grains and pasta. HMF was the least determined contaminant (4.1%), with only four studies on cookies included in the meta-analysis. The highest concentration was for acrylamide (136.29 µg·kg-1) followed by HMF (70.59 µg·kg-1) and PAHs (0.11 µg·kg-1). Acrylamide is the main processing contaminant researched, and no studies on the subject have been found in commercial samples in some regions of the world. This result shows a gap in the dates available about process contaminants in wheat-based foods and how the levels can change depending on the process parameters and the ingredients used.
Assuntos
Inocuidade dos Alimentos , Triticum , Pão , Bibliometria , Acrilamidas/análise , Acrilamida , Contaminação de Alimentos/análiseRESUMO
Food intake contributes to adequate growth and neurodevelopment of children. Ready-to-eat foods, frequently consumed by this population, are sources of acrylamide (AA), hydroxymethylfurfural (HMF) and furfural (FF). In this sense, a review of the AA, HMF, and FF presence in ready-to-eat foods was evaluated through a systematic search to infer the risk of exposure in the child population. About 75.8%, 24.2%, and 21% of the studies found AA, HMF, and FF in ready-to-eat foods, respectively. AA is predominant in processed and ultra-processed foods, while HMF and FF are commonly found in fruit-based foods. Only 17.7% of the studies assessed the children's risk of exposure, based on the contaminant concentration in ready-to-eat food and not after gastrointestinal digestion, a more realistic measure. Therefore, with the obtained information and found gaps, it is expected that new strategies will be proposed to assess the vulnerability of the child population to these processing contaminants.
Assuntos
Acrilamida , Fast Foods , Contaminação de Alimentos , Furaldeído , Furaldeído/análise , Furaldeído/análogos & derivados , Acrilamida/análise , Humanos , Criança , Fast Foods/análise , Contaminação de Alimentos/análise , Medição de Risco , Pré-EscolarRESUMO
This study used a green validated method to evaluate the risk of exposure of individuals of different ages to acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) by consuming white and wholewheat bread. Recoveries of AA and 5-HMF were 100.7% and 100.1%, respectively, while uncertainty was 2.3% and 6.2%. Levels of AA ranged from 617.22 to 3151.8 µg/kg while levels of 5-HMF ranged from 180.5 to 648.2 µg/kg. Female adolescents were almost 2-fold exposed to AA when they consumed 100% wholewheat bread (2.93 µg/kg bw/day) by comparison with white bread (1.72 µg/kg bw/day). Estimated daily exposure to AA was 1.5-fold higher than international recommendations. These findings raise concern for health risks associated with exposure to processing contaminant as the result of bread consumption, especially made from whole grains. Since development of those compounds is inevitable during breadmaking, it is crucial to standardize processing conditions and recipes to mitigate it.
Assuntos
Acrilamida , Pão , Contaminação de Alimentos , Furaldeído , Acrilamida/análise , Acrilamida/química , Furaldeído/análogos & derivados , Furaldeído/análise , Pão/análise , Feminino , Humanos , Contaminação de Alimentos/análise , Adolescente , Criança , Adulto , Masculino , Adulto Jovem , Pré-Escolar , Grãos Integrais/química , Pessoa de Meia-Idade , Triticum/químicaRESUMO
Polycyclic Aromatic Hydrocarbons (PAHs) are organic compounds with two or more condensed aromatic rings, formed from incomplete organic matter combustion. PAHs pose potential health risks due to their carcinogenic and mutagenic properties, accumulating in edible tissues of aquatic organisms, such as shrimp, which is extensively produced in the southern region of Rio Grande do Sul state (Brazil) and it is the most consumed seafood globally. Therefore, this study aimed to optimize and validate an analytical method for extracting 16 priority PAHs from shrimp samples using Vortex-Assisted Matrix Solid-Phase Dispersion (VA-MSPD) with determination by Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS). The optimized method, which uses a reused solid support, was validated according to INMETRO and SANTE guidelines. PAHs demonstrated adequate linearity with correlation coefficients > 0.99. The matrix effect was assessed, and 12 out of the 16 PAHs showed a matrix effect of less than ±20%. The method's quantification limits ranged from 6.67 to 33.35 ng g-1. Accuracy and precision showed recovery values ranging from 55 to 115% with relative standard deviation (RSD) lower than 17% for all PAHs. In the applicability, 11 PAHs were detected, such as benzo[a]pyrene and benzo[b]fluoranthene, and the ∑PAHs ranged from 25.14 to 79.52 ng g-1, confirming the environmental contamination in the region and the need for monitoring these contaminants in shrimp destined for human consumption.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Penaeidae , Hidrocarbonetos Policíclicos Aromáticos , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Penaeidae/química , Limite de Detecção , Brasil , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificaçãoRESUMO
This study aimed to evaluate the fate in digestive steps, bioaccessibility and diffusion of acrylamide (AA) and 5-Hydroxymethylfurfural (5-HMF) in bread samples produced under different processing parameters. AA and 5-HMF were determined in every sample ready-to-eat, after every digestion step and in the digested after crossing the dialysis membrane. The contaminants were extracted by QuEChERS method and determined by HPLC-PDA. Doubling fermentation time (from 60 to 120 min) increased the level of AA by 1.2-fold, and it decreased the level of 5-HMF by 1.4-fold. A combination of 60 min fermentation and 20 min baking led to the lowest levels of AA (1.71 mg/kg) and 5-HMF (0.50 mg/kg). There was no increase in AA level in the gastric stage however, the 5-HMF level increased. Both contaminant levels had increased in the intestinal stage. This fact showed that the determination of the contaminants in the ready-to-eat product did not reflect their actual bioaccessibility because the digestive enzymes and pH variation may affect the release and detection of AA and 5-HMF accumulated in the baking stage. The initial levels of 5-HMF were correlated to the baking time, and initial levels of AA were correlated to the fermentation time. From the bioaccessible levels of AA and 5-HMF, approximately 90 % (5 mg/kg) and 100 % (6.5 mg/kg) crossed the dialysis membrane respectively. Initial and bioaccessible levels of AA were above the security recommendations for bread (50 µg/kg), which is a concern considering the daily consumption of this food. This study showed that focusing on a combination of processing parameters could be a promising strategy to decrease the bioaccessibility of both contaminants in bread.
Assuntos
Acrilamida , Furaldeído , Cromatografia Líquida de Alta PressãoRESUMO
The study evaluated the effect of cooking time on the levels of type B trichothecenes (TCTB), acrylamide (AA) and hydroxymethylfurfural (HMF) in semolina pasta and their bioaccessibilities in order to propose strategies to reduce the daily exposure of these natural and processing contaminants. Three brands of commercial pasta were submitted to different cooking times (7, 10 and 13 min). Subsequently, the in vitro bioaccessibility trials, permeation across the intestinal membrane and estimation of daily exposure were carried out. The lowest cooking time (7 min) resulted in high reductions of TCTB (88%) and AA + HMF (76.7%) contents found on the raw pasta. The concentrations of deoxynivalenol (DON) and AA were higher after the digestion (bioaccessibilities >100%) than after the pasta cooking. About 25.6% of DON and 100% of AA found in the small intestine digestible fraction were able to permeate the intestinal membrane. The risk of exposure was below the recommended safe limits since the estimated daily exposure values were 0.22 µg/kg per body weight/day for DON and 0.26 µg/kg per body weight/day for AA. Therefore, cooking pasta for 7 min at a pasta:water ratio of 1:10 (w/v) mitigates the contaminants and promotes the greater formation of resistant starch.