Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 91(11): 3343-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141195

RESUMO

Spatially organized distribution patterns of species and communities are shaped by both autogenic processes (neutral mechanism theory) and exogenous processes (niche theory). In the latter, environmental variables that are themselves spatially organized induce spatial structure in the response variables. The relative importance of these processes has not yet been investigated in urban habitats. We compared the variance explained by purely spatial, spatially structured environmental, and purely environmental components for the community composition of spiders (Araneae), bees (Apidae), and birds (Aves) at 96 locations in three Swiss cities. Environmental variables (topography, climate, land cover, urban green management) were measured on four different radii around sampling points (< 10 m, 50 m, 250 m, 1000 m), while Moran's eigenvector maps (MEMs) acted as spatial variables. All three taxonomic groups showed weak spatial structure. Spider communities reacted to very fine-scaled environmental changes of lawn and meadow management and climate. Bird community composition was determined by woody plants as well as solar radiation at all radii, the scale of the influence varying among species. Bee communities were weakly explained by isolated variables only. Our results suggest that the anthropogenic structuring of urban areas has disrupted the spatial organization of environmental variables and inhibited the development of biotic spatial processes. The near absence of spatial structure may therefore be a feature typical of urban species assemblages, resulting in urban community composition mainly influenced by local environmental variables. Urban environments represent a close-knit mosaic of habitats that are regularly disturbed. Species communities in urban areas are far from equilibrium. Our analysis also suggests that urban communities need to be considered as being in constant change to adapt to disturbances and changes imposed by human activities.


Assuntos
Abelhas/fisiologia , Aves/fisiologia , Ecossistema , Aranhas/fisiologia , Animais , Cidades , Modelos Biológicos , Dinâmica Populacional , Processos Estocásticos , Suíça
2.
Microb Ecol ; 39(4): 290-300, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10882434

RESUMO

The distribution of soil microorganisms is generally believed to be patchy and to reflect habitat heterogeneity. Despite this general rule, the amount of existing data on species distribution patterns is scarce. Testate amoebae (Protozoa; Rhizopoda) are an important component of soil microbial communities and are increasingly used in ecological and paleoecological studies of Sphagnum-dominated peatlands, but data on the spatial structure of communities are completely lacking. This is an important aspect since quantitative models used for paleoecological reconstruction and monitoring are based on species assemblages. We explored the distribution patterns of testate amoebae distribution in a macroscopically homogeneous Sphagnum carpet, down to a scale of several centimeters. Distributions maps of the species and spatially constrained sample groups were produced. Multivariate and individual spatial autocorrelations were calculated. The importance of spatial structure was quantified by canonical correspondence analysis. Our ultimate goal is to find the finest resolution of environmental monitoring using testate amoebae. The distribution patterns differed among species, resulting in a complex spatial structure of the species assemblage in a whole. Spatial structure accounted for 36% of the total variation of species abundance in a canonical correspondence analysis constrained by spatial variables. This structure was partly correlated to altitude (microtopography) at a very fine scale. These results confirmed the existence of significant broad- and fine-scale spatial structures within testate amoebae communities that could in part be interpreted as effects of ecological gradients. This shows that, on a surface area of 0.25 m(2), ecological conditions which look uniform from a macroscopic point of view are not perceived as such by Sphagnum-inhabiting organisms. Therefore, testate amoebae could prove very useful to monitor fine-scale ecological processes or disturbances. Studies of the species' spatial distribution patterns in combination with autoecological studies are needed and should be included in the toolbox of biomonitoring itself.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa