Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 145(38): 21040-21052, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721732

RESUMO

Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.

2.
Angew Chem Int Ed Engl ; 62(25): e202302087, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37062698

RESUMO

CO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni-doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass-specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce-O frustrated Lewis pair (FLP), Ni-O classical Lewis pair (CLP) and Ni-Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.


Assuntos
Dióxido de Carbono , Níquel , Gases , Hidrogenação , Íons
3.
Phys Chem Chem Phys ; 23(34): 18322-18337, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612374

RESUMO

The speciation of framework-interacting CuII sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NOx with NH3 is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O2 mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O2 followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z2CuII sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z2CuII monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O2. By contrast, framework-anchored Z[CuII(NO3)] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O2 with Z[CuII(OH)] sites or structurally similar mono- or multi-copper Zx[CuIIxOy] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[CuII(OH)]/Zx[CuIIxOy] sites formed during activation in O2 and that of Z[CuII(NO3)] complexes formed by reaction with NO/O2, further confirming the chemical inertia of Z2CuII towards these reactants in the absence of solvating NH3 molecules.

4.
Angew Chem Int Ed Engl ; 60(49): 25891-25896, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582094

RESUMO

A series of gas-phase reactants is used to treat a Cu-exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X-ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu-Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu-oxo species formed upon oxidation was further crosschecked by DFT-assisted fitting of the EXAFS data and by resonant Raman spectroscopy. Altogether, the CuI /CuII speciation clearly correlates with Cu proximity, with metal ion pairs quantitatively forming under an oxidative environment.

5.
J Am Chem Soc ; 142(37): 15884-15896, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32830975

RESUMO

The NH3-mediated selective catalytic reduction (NH3-SCR) of NOx over Cu-ion-exchanged chabazite (Cu-CHA) catalysts is the basis of the technology for abatement of NOx from diesel vehicles. A crucial step in this reaction is the activation of oxygen. Under conditions for low-temperature NH3-SCR, oxygen only reacts with CuI ions, which are present as mobile CuI diamine complexes [CuI(NH3)2]+. To determine the structure and reactivity of the species formed by oxidation of these CuI diamine complexes with oxygen at 200 °C, we have followed this reaction, using a Cu-CHA catalyst with a Si/Al ratio of 15 and 2.6 wt% Cu, by X-ray absorption spectroscopies (XANES and EXAFS) and diffuse reflectance UV-Vis spectroscopy, with the support of DFT calculations and advanced EXAFS wavelet transform analysis. The results provide unprecedented direct evidence for the formation of a [Cu2(NH3)4O2]2+ mobile complex with a side-on µ-η2,η2-peroxo diamino dicopper(II) structure, accounting for 80-90% of the total Cu content. These [Cu2(NH3)4O2]2+ are completely reduced to [CuI(NH3)2]+ at 200 °C in a mixture of NO and NH3. Some N2 is formed as well, which suggests the role of the dimeric complexes in the low-temperature NH3-SCR reaction. The reaction of [Cu2(NH3)4O2]2+ complexes with NH3 leads to a partial reduction of the Cu without any formation of N2. The reaction with NO results in an almost complete reduction to CuI, under the formation of N2. This indicates that the low-temperature NH3-SCR reaction proceeds via a reaction of these complexes with NO.

6.
J Synchrotron Radiat ; 27(Pt 6): 1741-1752, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147203

RESUMO

THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser-based Jupyter notebook framework. It aims to provide an interactive and user-friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on-the-fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user-defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider-based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising-edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R-factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.

7.
Inorg Chem ; 59(1): 203-213, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31846320

RESUMO

The behavior in solution of the dicyanoaurate anion in the presence of other metal centers has so far been little explored, despite its importance in material science. The design and synthesis of systems with controlled coordination behavior, using chelating ligands and ZnII, has allowed us to detect self-assembly and oligomerization in solution. This phenomenon has been studied with 13C and 1H NMR, absorption and emission UV-vis spectroscopy, ESI-MS, and XAS at both the Au L3-edge and Zn K-edge: all of these techniques confirm the presence of Au-Zn aggregation products. These fragments, resembling structural units in the solid state, reveal that coordination of dicyanoaurate to free sites around metal centers can occur at a lower concentration than those at which crystals start to form and at which aurophilic interactions are observed, forming the connection between solution species and solid-state architectures.

8.
Phys Chem Chem Phys ; 22(34): 18950-18963, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32578608

RESUMO

Cu-exchanged zeolites have been shown to possess Cu-oxo species active towards the direct methane to methanol (DMTM) conversion, carried out through a chemical-looping approach. Different Cu-zeolites have been investigated for the DMTM process, with Cu-mordenite (Cu-MOR) being among the most active. In this context, an accurate determination of the local structure and nuclearity of selective Cu-oxo species responsible for an efficient DMTM conversion still represents an ongoing challenge for characterization methods, including synchrotron-based X-ray absorption spectroscopy (XAS). Herein, we explore the potential of an alternative analysis of Extended X-ray Absorption Fine Structure (EXAFS) data using wavelet transform (WT) to enhance the technique sensitivity to multimeric Cu species hosted in the MOR framework. Combining ex situ XAS measurements under model red-ox conditions with in situ data collected after the key steps of the DMTM process, we demonstrate how EXAFS-WT enables unambiguous detection of Cu-Cu scattering contributions from multimeric Cu-species. As also confirmed by complementary in situ IR spectroscopy results, these are observed to dynamically respond to the chemical environment over the different conditions probed. We finally report a proof-of-concept EXAFS fit using the WT representation, applied to the structural refinement of O2-activated Cu-MOR. The fitting results reveal a Cu local coordination environment consistent with mono-(µ-oxo) di-copper cores, with Cu-Cu separation of ∼3.1 Å, paving the way to future applications and developments of the method in the field of Cu-zeolite research and beyond.

9.
Chem Soc Rev ; 47(22): 8097-8133, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30083666

RESUMO

We review the structural chemistry and reactivity of copper-exchanged molecular sieves with chabazite (CHA) topology, as an industrially applied catalyst in ammonia mediated reduction of harmful nitrogen oxides (NH3-SCR) and as a general model system for red-ox active materials (also the recent results in the direct conversion of methane to methanol are considered). Notwithstanding the apparent structural simplicity of the material, a crystalline zeolite with only one crystallographically independent T site, the Cu-SSZ-13 catalyst reveals a high degree of complexity that has been decrypted by state of the art characterization tools. From the reviewed data, the following important aspects in the understanding of the Cu-SSZ-13 catalyst clearly emerged: (i) the structural dynamics of the Cu-species require precise control of the environmental conditions during activation and characterization; (ii) the availability of a large library of well-defined catalysts with different Si/Al and Cu/Al compositional ratios is key in unravelling the red-ox properties of the active Cu sites; (iii) a multi-technique approach is required, combining complementary techniques able to provide independent structural, electronic and vibrational information; (iv) synchrotron radiation based techniques (EXAFS, XANES, XES and time-resolved powder XRD) played a relevant role; (v) operando methodology (possibly supported by advanced chemometric approaches) is essential in obtaining structure-reactivity relations; (vi) the support of theoretical studies has been indispensable for the interpretation of the experimental output from characterization and for a critical assessment of mechanistic models. The old literature that classified Cu-exchanged zeolites in the category of single-site catalysts has been partially disproved by the recent advanced studies where it has been shown that the active site in the low temperature NH3-SCR catalyst is a mobile Cu-molecular entity that "lives in symbiosis" with an inorganic solid framework. Only in the high temperature NH3-SCR regime do the mobile Cu-species lose their ligands and find docking sites at the internal walls of the zeolite framework, thus reflecting the idea of a single-site catalyst. After a brief introduction, the review is divided into three main parts devoted to characterization (Section 2), reactivity (Section 3), and industrial applications (Section 4), followed by some concluding remarks and providing a perspective of the field.

10.
J Am Chem Soc ; 140(45): 15270-15278, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346154

RESUMO

The direct conversion of methane to methanol (MTM) is a reaction that has the potential to disrupt a great part of the synthesis gas-derived chemical industry. However, despite many decades of research, active enough catalysts and suitable processes for industrial application are still not available. Recently, several copper-exchanged zeolites have shown considerable activity and selectivity in the direct MTM reaction. Understanding the nature of the active site in these materials is essential for any further development in the field. Herein, we apply multivariate curve resolution analysis of X-ray absorption spectroscopy data to accurately quantify the fraction of active Cu in Cu-MOR (MOR = mordenite), allowing an unambiguous determination of the active site nuclearity as a dicopper site. By rationalizing the compositional parameters and reaction conditions, we achieve the highest methanol yield per Cu yet reported for MTM over Cu-zeolites, of 0.47 mol/mol.

11.
Inorg Chem ; 57(21): 13998-14004, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30354088

RESUMO

Although X-ray absorption spectroscopy (XAS) has become an indispensable tool in characterization of solid-state materials, it is less of a staple in molecular chemistry of niobium. Scattering X-ray techniques remain relatively unexplored for the systematic study of molecular niobium compounds. Here, we use XAS to probe the niobium environment in commonly used Nb precursors in +V, +IV, and +III oxidation states. Apart from laying out the guidelines for identification of niobium oxidation states, we correlate our data with density functional theory models to provide further structural insight. Of particular note, we are able to shed light on the nature of the commonly used and catalytically competent NbCl3(DME), which had not been previously characterized structurally despite its prevalence in Nb chemistry.

12.
J Am Chem Soc ; 139(16): 5992-5997, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28347141

RESUMO

Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.

13.
J Am Chem Soc ; 139(42): 14961-14975, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28945372

RESUMO

Cu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps. We find that the CuII moieties responsible for the conversion are formed in the presence of O2 and that high temperature together with prolonged activation time increases the population of such active sites. We evidence a linear correlation between the reducibility of the materials and their methanol productivity. By optimizing the process conditions and material composition, we are able to reach a methanol productivity as high as 0.2 mol CH3OH/mol Cu (125 µmol/g), the highest value reported to date for Cu-SSZ-13. Our results clearly demonstrate that high populations of 2Al Z2CuII sites in 6r, favored at low values of both Si:Al and Cu:Al ratios, inhibit the material performance by being inactive for the conversion. Z[CuIIOH] complexes, although shown to be inactive, are identified as the precursors to the methane-converting active sites. By critical examination of the reported catalytic and spectroscopic evidence, we propose different possible routes for active-site formation.

14.
Inorg Chem ; 56(23): 14408-14425, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976176

RESUMO

We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H2O, CO, H2S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni2+, which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

15.
Nano Lett ; 16(3): 1669-74, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26814601

RESUMO

We describe the first use of a novel photoresist-free X-ray nanopatterning technique to fabricate an electronic device. We have produced a proof-of-concept device consisting of a few Josephson junctions by irradiating microcrystals of the Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide with a 17.6 keV synchrotron nanobeam. Fully functional devices have been obtained by locally turning the material into a nonsuperconducting state by means of hard X-ray exposure. Nano-XRD patterns reveal that the crystallinity is substantially preserved in the irradiated areas that there is no evidence of macroscopic crystal disruption. Indications are that O ions have been removed from the crystals, which could make this technique interesting also for other oxide materials. Direct-write X-ray nanopatterning represents a promising fabrication method exploiting material/material rather than vacuum/material interfaces, with the potential for nanometric resolution, improved mechanical stability, enhanced depth of patterning, and absence of chemical contamination with respect to traditional lithographic techniques.

16.
Angew Chem Int Ed Engl ; 56(35): 10367-10372, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28670829

RESUMO

Using quasi-simultaneous in situ PXRD and XANES, the direct correlation between the oxidation state of Cu ions in the commercially relevant deNOx NH3 -SCR zeolite catalyst Cu-CHA and the Cu ion migration in the zeolitic pores was revealed during catalytic activation experiments. A comparison with recent reports further reveals the high sensitivity of the redox-active centers concerning heating rates, temperature, and gas environment during catalytic activation. Previously, Cu+ was confirmed present only in the 6R. Results verify a novel 8R monovalent Cu site, an eventually large Cu+ presence upon heating to high temperatures in oxidative conditions, and demonstrate the unique potential in combining in situ PXRD and XANES techniques, with which both oxidation state and structural location of the redox-active centers in the zeolite framework could be tracked.

17.
J Am Chem Soc ; 138(37): 12025-8, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27532483

RESUMO

The small-pore Cu-CHA zeolite is today the object of intensive research efforts to rationalize its outstanding performance in the NH3-assisted selective catalytic reduction (SCR) of harmful nitrogen oxides and to unveil the SCR mechanism. Herein we exploit operando X-ray spectroscopies to monitor the Cu-CHA catalyst in action during NH3-SCR in the 150-400 °C range, targeting Cu oxidation state, mobility, and preferential N or O ligation as a function of reaction temperature. By combining operando XANES, EXAFS, and vtc-XES, we unambiguously identify two distinct regimes for the atomic-scale behavior of Cu active-sites. Low-temperature SCR, up to ∼200 °C, is characterized by balanced populations of Cu(I)/Cu(II) sites and dominated by mobile NH3-solvated Cu-species. From 250 °C upward, in correspondence to the steep increase in catalytic activity, the largely dominant Cu-species are framework-coordinated Cu(II) sites, likely representing the active sites for high-temperature SCR.

18.
Nano Lett ; 14(3): 1583-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24568635

RESUMO

We describe the controlled use of a 17 keV X-ray synchrotron nanobeam to progressively change the oxygen doping level in Bi-2212 superconducting whisker-like single crystals. Our data combine structural and electrical information collected on the same crystals, showing a maximum change in the critical temperature Tc of 1.3 K and a maximum elongation of ∼1 Šin the c-axis length, compared to the as-grown conditions. Simulations of our experimental conditions by means of a finite element model exclude local heating induced by the X-ray nanobeam as a possible cause for the change in the doping level and suggest an important role of secondary electrons. These findings support the possible use of hard X-rays as a novel direct-writing, photoresist-free lithographic process for the fabrication of superconducting devices, with potential nanometric resolution and 3D capability.

19.
J Phys Chem Lett ; 15(16): 4494-4500, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634706

RESUMO

In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.

20.
Dalton Trans ; 53(19): 8141-8153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483202

RESUMO

Metal-organic frameworks (MOFs) featuring zirconium-based clusters are widely used for the development of functionalized materials due to their exceptional stability. In this study, we report the synthesis of a novel N,N,N-ligand compatible with a biphenyl dicarboxylic acid-based MOF. However, the resulting copper(I) complex exhibited unexpected coordination behaviour, lacking the intended trifold coordination motif. Herein, we demonstrate the successful immobilization of a bioinspired ligand within the MOF, which preserved its crystalline and porous nature while generating a well-defined copper site. Comprehensive spectroscopic analyses, including X-ray absorption, UV/Vis, and infrared spectroscopy, were conducted to investigate the copper site and its thermal behaviour. The immobilized ligand exhibited the desired tridentate coordination to copper, providing access to a coordination motif otherwise unattainable. Notably, water molecules were also found to coordinate to copper. Upon heating, the copper centre within the MOF exhibited reversible dehydration, suggesting facile creation of open coordination sites. Furthermore, the copper site displayed reduction at elevated temperatures and subsequent susceptibility to oxidation by molecular oxygen. Lastly, both the molecular complexes and the MOF were evaluated as catalysts for the oxidation of cyclohexane using hydrogen peroxide. This work highlights the successful immobilization of a bioinspired ligand in a zirconium-based MOF, shedding light on the structural features, thermal behaviour, and catalytic potential of the resulting copper sites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa