Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(13): 7447-7454, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32165542

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Dinorfinas/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Oócitos/metabolismo , Prótons , Xenopus laevis
2.
J Am Chem Soc ; 138(12): 3966-9, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26967463

RESUMO

The formation of reactive oxygen species (ROS) is linked to the pathogenesis of neurodegenerative diseases. Here we have investigated the effect of soluble and aggregated amyloid-ß (Aß) and α-synuclein (αS), associated with Alzheimer's and Parkinson's diseases, respectively, on the Cu(2+)-catalyzed formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aß or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aß or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS-active metal ions in the aggregates or as a downstream consequence of the formation of the pathological amyloid structures.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/química , Espécies Reativas de Oxigênio , alfa-Sinucleína/metabolismo , Catálise , Sequestradores de Radicais Livres/metabolismo , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
3.
Chembiochem ; 16(9): 1293-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25989377

RESUMO

Metal ions and their interaction with the amyloid beta (Aß) peptide might be key elements in the development of Alzheimer's disease. In this work the effect of Cu(II) on the aggregation of Aß is explored on a timescale from milliseconds to days, both at physiological pH and under mildly acidic conditions, by using stopped-flow kinetic measurements (fluorescence and light-scattering), (1) H NMR relaxation and ThT fluorescence. A minimal reaction model that relates the initial Cu(II) binding and Aß folding with downstream aggregation is presented. We demonstrate that a highly aggregation prone Aß⋅Cu(II) species is formed on the sub-second timescale at mildly acidic pH. This observation might be central to the molecular origin of the known detrimental effect of acidosis in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Acidose/metabolismo , Doença de Alzheimer/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo
4.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156612

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels involved in fast synaptic transmission. Pharmacological inhibition of ASIC1a reduces neurotoxicity and stroke infarct volumes, with the cysteine knot toxin psalmotoxin-1 (PcTx1) being one of the most potent and selective inhibitors. PcTx1 binds at the subunit interface in the extracellular domain (ECD), but the mechanism and conformational consequences of the interaction, as well as the number of toxin molecules required for inhibition, remain unknown. Here, we use voltage-clamp fluorometry and subunit concatenation to decipher the mechanism and stoichiometry of PcTx1 inhibition of ASIC1a. Besides the known inhibitory binding mode, we propose PcTx1 to have at least two additional binding modes that are decoupled from the pore. One of these modes induces a long-lived ECD conformation that reduces the activity of an endogenous neuropeptide. This long-lived conformational state is proton-dependent and can be destabilized by a mutation that decreases PcTx1 sensitivity. Lastly, the use of concatemeric channel constructs reveals that disruption of a single PcTx1 binding site is sufficient to destabilize the toxin-induced conformation, while functional inhibition is not impaired until two or more binding sites are mutated. Together, our work provides insight into the mechanism of PcTx1 inhibition of ASICs and uncovers a prolonged conformational change with possible pharmacological implications.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Animais , Sítios de Ligação , Cisteína/metabolismo , Fluorometria/métodos , Concentração de Íons de Hidrogênio , Conformação Molecular , Mutação , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Peptídeos/genética , Ligação Proteica , Prótons , Venenos de Aranha/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa