Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 54: 110526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799714

RESUMO

Onchidoris muricata is a widespread shell-less species of nudibranch molluscs, which has unique for Gastropoda skeletal elements - subepidermal calcite spicules. The general and fine morphology of the spicules, as well as their maturation process in ontogenesis, have been studied in detail by authors. The uniqueness of spicules lies in their intracellular formation and location under the ectodermal epithelium, which is more typical for deuterostomes. We present O. muricata as a potentially new model species for studying calcification of intracellular protein structure. A total of 96 individuals were collected in the Kandalaksha Bay of the White Sea, both manually and by scuba diving. All individuals were divided into three groups based on morphological characteristics such as specimens' size, spicule condition etc. This division suggests the existence of three stages in postembryonic ontogenesis of O. muricata reflecting the maturation of the spicule complex. Total RNA samples were isolated from three size groups of molluscs in three biological replicates. Libraries were prepared from the polyadenylated RNA fraction and sequenced at NovaSeq6000 (Illumina), yielding a total of 112.8 Gb of 150 bp paired-end reads, corresponding to almost 1,000-fold coverage of the transcriptome. Representative transcriptome assembled de novo with Trinity. In addition to obtaining the transcriptome sequences of O. muricata, differential expression analysis was also performed for these three size groups. This allows us to trace the dynamics of molecular and biological processes during the life of a mollusc. The obtained data can then be used as a reference transcriptome for closely related species, to study specific expressed genes, to identify various unique sequences, including protein-coding ones, to understand biological processes, including biomineralization and much more.

2.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805549

RESUMO

While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.


Assuntos
Morfogênese , Poríferos/fisiologia , Regeneração , Animais , Poríferos/crescimento & desenvolvimento , Transdução de Sinais
3.
PeerJ ; 3: e1211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26336645

RESUMO

The ability to regenerate is widespread in the animal kingdom, but the regenerative capacities and mechanisms vary widely. To understand the evolutionary history of the diverse regeneration mechanisms, the regeneration processes must be studied in early-evolved metazoans in addition to the traditional bilaterian and cnidarian models. For this purpose, we have combined several microscopy techniques to study mechanisms of regeneration in the demosponge Halisarca dujardini. The objectives of this work are to detect the cells and morphogenetic processes involved in Halisarca regeneration. We show that in Halisarca there are three main sources of the new exopinacoderm during regeneration: choanocytes, archaeocytes and (rarely) endopinacocytes. Here we show that epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) occur during Halisarca regeneration. EMT is the principal mechanism during the first stages of regeneration, soon after the injury. Epithelial cells from damaged and adjacent intact choanocyte chambers and aquiferous canals assume mesenchymal phenotype and migrate into the mesohyl. Together with archaeocytes, these cells form an undifferentiated cell mass beneath of wound, which we refer to as a blastema. After the blastema is formed, MET becomes the principal mechanism of regeneration. Altogether, we demonstrate that regeneration in demosponges involves a variety of processes utilized during regeneration in other animals (e.g., cell migration, dedifferentiation, blastema formation) and points to the particular importance of transdifferentiation in this process. Further studies will be needed to uncover the molecular mechanisms governing regeneration in sponges.

4.
PLoS One ; 10(8): e0134566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270639

RESUMO

Sponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges. In this work we reveal the underlying cellular mechanisms used during morphogenesis accompanying ectosome regeneration in the homoscleromorph sponge model: Oscarella lobularis. We identified three main sources of novel exopinacoderm during the processes of its regeneration and the restoration of functional peripheral parts of the aquiferous system in O. lobularis: (1) intact exopinacoderm surrounding the wound surface, (2) the endopinacoderm from peripheral exhalant and inhalant canals, and (3) the intact choanoderm found on the wound surface. The basic morphogenetic processes during regeneration are the spreading and fusion of epithelial sheets that merge into one continuous epithelium. Transdifferentiation of choanocytes into exopinacocytes is also present. Epithelial-mesenchymal transition is absent during regeneration. Moreover, we cannot reveal any other morphologically distinct pluripotent cells. In Oscarella, neither blastema formation nor local dedifferentiation and proliferation have been detected, which is probably due to the high morphogenetic plasticity of the tissue. Regeneration in O. lobularis goes through cell transdifferentiation and through the processes, when lost body parts are replaced by the remodeling of the remaining tissue. Morphogenesis during ectosome regeneration in O. lobularis is correlated with its true epithelial organization. Knowledge of the morphological basis of morphogenesis during Oscarella regeneration could have important implications for our understanding of the diversity and evolution of regeneration mechanisms in metazoans, and is a strong basis for future investigations with molecular-biological approaches.


Assuntos
Diferenciação Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Poríferos/fisiologia , Regeneração/fisiologia , Animais , Poríferos/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa