Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Chembiochem ; 25(1): e202300577, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37874183

RESUMO

Cellular genome is considered a dynamic blueprint of a cell since it encodes genetic information that gets temporally altered due to various endogenous and exogenous insults. Largely, the extent of genomic dynamicity is controlled by the trade-off between DNA repair processes and the genotoxic potential of the causative agent (genotoxins or potential carcinogens). A subset of genotoxins form DNA adducts by covalently binding to the cellular DNA, triggering structural or functional changes that lead to significant alterations in cellular processes via genetic (e. g., mutations) or non-genetic (e. g., epigenome) routes. Identification, quantification, and characterization of DNA adducts are indispensable for their comprehensive understanding and could expedite the ongoing efforts in predicting carcinogenicity and their mode of action. In this review, we elaborate on using Artificial Intelligence (AI)-based modeling in adducts biology and present multiple computational strategies to gain advancements in decoding DNA adducts. The proposed AI-based strategies encompass predictive modeling for adduct formation via metabolic activation, novel adducts' identification, prediction of biochemical routes for adduct formation, adducts' half-life predictions within biological ecosystems, and, establishing methods to predict the link between adducts chemistry and its location within the genomic DNA. In summary, we discuss some futuristic AI-based approaches in DNA adduct biology.


Assuntos
Adutos de DNA , Ecossistema , Inteligência Artificial , Mutagênicos , DNA/genética
2.
Anal Biochem ; 683: 115333, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37907159

RESUMO

The present study evaluates the pharmacokinetics and metabolic stability of a novel lysosomotropic autophagy inhibitor, IITZ-01 using an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). It is required as this lead molecule awaits pre-clinical studies for development because of significant therapeutic outcomes in triple-negative breast cancer and renal cancer. A bioanalytical method for the quantitative determination of IITZ-01 in the plasma of mice was developed using the UPLC-MS/MS technique. The UPLC-MS/MS method was validated according to US-FDA bioanalytical guidance and successfully applied to study the pharmacokinetics and metabolic stability. Separation of IITZ- 01 and ZSTK474 (IS) from endogenous components with high selectivity and sensitivity (0.5 ng/mL) was achieved using Waters Acquity BEH C-18 column (50 mm × 2.1 mm, 1.7 µm). A gradient mobile phase consisting of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile was applied at a flow rate of 0.2 mL/min. Electrospray ionization was employed in positive ion mode for detection, while quantification utilized the multiple reaction monitoring (MRM) mode. This involved using [M+H]+fragment ions at m/z 483.19 â†’ 235.09 for IITZ-01 and m/z 418 â†’ 138 for the internal standard (IS). The method was validated over the calibration range of 0.5-800 ng/mL. The LLOQ of IITZ-01 was 0.5 ng/mL in mice plasma. The method demonstrated good in terms of intra- and inter-day precision and accuracy. The matrix effect was found to be negligible, and the stability data were within acceptable limits. The validated technique supports suitability, reliability, reproducibility, and sensitivity for the pre-clinical investigation of IITZ-01 pharmacokinetics in mice and metabolic stability in human liver microsomes.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Humanos , Camundongos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
3.
Chem Res Toxicol ; 36(4): 669-684, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36976269

RESUMO

Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users' specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.


Assuntos
Neoplasias Bucais , Tabaco sem Fumaça , Humanos , Tabaco sem Fumaça/efeitos adversos , Espectrometria de Massas em Tandem , Metabolômica , Biomarcadores/urina
4.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320838

RESUMO

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Fibrilina-1/genética , Síndrome de Marfan/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Adulto , Dissecção Aórtica/enzimologia , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Síndrome de Marfan/complicações , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Proteína Smad3/metabolismo
5.
Chirality ; 34(9): 1247-1256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35727097

RESUMO

Acalabrutinib is aided in the treatment of various cancers, which acts by inhibiting Bruton tyrosine kinase. Acalabrutinib belongs to the imidazopyrazine class consisting of a chiral carbon, resulting in two enantiomers. Currently, no methods exist for the separation and quantification of these enantiomers. A novel and selective enantiomeric chromatographic technique has been established to estimate the enantiomeric purity of acalabrutinib. Chiral separation was carried out on an immobilized amylose-based chiral stationary phase with methyl tert-butyl ether/ethanol/ethylenediamine (60:40:0.1% v/v) mixture as a mobile phase. The total runtime is 20 min, and the resolution (Rs ) between the enantiomers was more than 2.5. The detection and quantification thresholds for the R-enantiomer were 0.06 and 0.2 µg mL-1 , respectively, for a test concentration of acalabrutinib (1000 µg mL-1 ). The linearity of the technique for the R-enantiomer was excellent (R2 > 0.999) over the range from the limit of quantification to 0.3%. Recovery of the R-enantiomer was ranged from 95% to 102%, indicating the greater accuracy of the technique. For a 48-h research period, the drug was shown to be stable.


Assuntos
Amilose , Amilose/química , Benzamidas , Cromatografia Líquida de Alta Pressão/métodos , Pirazinas , Reprodutibilidade dos Testes , Estereoisomerismo
6.
AAPS PharmSciTech ; 23(4): 89, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296955

RESUMO

The low oral bioavailability, short biological half-life, high dose, and frequent dosing of berberine (BBR) contribute to its restricted clinical use despite its extensive pharmacological activity. Thus, the objective of this study was to formulate sustained-release microparticles (MPs) using a pH-independent release polymer and to evaluate their potential to improve the oral bioavailability of BBR. BBR loaded MPs were prepared using the emulsion crosslinking method and evaluated for particle size, circularity, morphology, entrapment efficiency, solid-state analysis, swelling index, and in vitro BBR release study fitted with different models of release kinetics. The MPs exhibited desired particle sizes ranges between 11.09-11.62 µm and were almost spherical in shape, as confirmed by the circularity value and micrographic images. A loss of BBR crystallinity was observed after encapsulation in MPs, as evident from various solid-state analyses. The final optimized batch (F3) showed highest % BBR entrapment efficiency value of 81.63% ± 4.9. The in vitro BBR release performance in both acidic and alkaline media showed the desired sustained release behavior from the crosslinked MPs, where the maximum BBR release was observed at alkaline pH, which is in accordance with the swelling study data. In the in vivo study, the oral absorption profiles of BBR from both pristine and MPs formats were investigated using in-house prototyped 3D printed hollow capsules as a unit dose carrier. In vivo data showed sustained and prolonged absorption behavior of BBR from MPs compared to their pristine counterparts, which resulted in a cumulative increment of relative oral bioavailability to mitigate the aforementioned issues related to BBR. Graphical Abstract.


Assuntos
Berberina , Administração Oral , Disponibilidade Biológica , Tamanho da Partícula , Impressão Tridimensional
7.
Drug Metab Rev ; 53(3): 285-320, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33980079

RESUMO

Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.


Assuntos
Fígado , Proteínas de Membrana Transportadoras , Animais , Transporte Biológico , Interações Medicamentosas , Humanos , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo
8.
Biomed Chromatogr ; 30(10): 1556-72, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27006091

RESUMO

The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/efeitos dos fármacos , Metoprolol/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Área Sob a Curva , Inibidores do Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos , Metoprolol/metabolismo
9.
Toxicol Appl Pharmacol ; 277(1): 8-20, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637089

RESUMO

Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Flavonoides/farmacologia , Gentamicinas/toxicidade , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Gentamicinas/farmacologia , Mediadores da Inflamação/metabolismo , Rim/imunologia , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Biomed Chromatogr ; 28(6): 788-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24861745

RESUMO

Nilutamide, a nonsteroidal anti-androgen drug, widely used in the treatment of prostate cancer, was subjected to hydrolytic, photolytic, thermal and oxidative stress conditions as per International Conference on Harmonization guidelines Q1A (R2). Nilutamide showed significant degradation under basic hydrolysis and photolytic stress conditions, while it was stable to neutral, acidic and thermal stress conditions. Five degradation products were formed and the chromatographic separation of nilutamide and its degradation products was achieved on a Waters C18 column (4.6 × 250 mm, 5 µm) using a mobile phase consisting of acetonitrile and 0.1% of formic acid in an isocratic elution method. All these degradation products were characterized by LC/MS/MS in negative ion mode, combined with accurate mass measurements. To assign likely structures for the observed degradation products, the fragmentation patterns of the deprotonated drug and its degradation products were compared. The in silico toxicity of the drug and its degradation products was also assessed using TOPKAT software. The carcinogenicity probability of the degradation products, DP-I-IV, was greater than that of nilutamide.


Assuntos
Antagonistas de Androgênios/química , Imidazolidinas/química , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Estrutura Molecular , Fotólise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
11.
Arch Med Res ; 55(1): 102909, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984232

RESUMO

BACKGROUND: Gestational hypertension (GH) is a severe complication that occurs after 20 weeks of pregnancy; however, its molecular mechanisms are not yet fully understood. OBJECTIVE: Through this case-control discovery phase study, we aimed to find disease-specific candidate placental microRNAs (miRNAs) and metabolite markers for differentiating GH by integrating next-generation sequencing and metabolomics multi-omics analysis of placenta. Using small RNA sequencing and metabolomics of placental tissues of healthy pregnant (HP, n = 24) and GH subjects (n = 20), the transcriptome and metabolome were characterized in both groups. RESULTS: The study identified a total of 44 downregulated placental miRNAs which includes three novel, three mature and 38 precursor miRNAs. Six miRNAs including three mature (hsa-miR-181a-5p, hsa-miR-498-5p, and hsa-miR-26b-5p) and three novel (NC_000016.10_1061, NC_000005.10_475, and NC_000001.11_53) were considered for final target prediction and functional annotation. Integrative analysis of differentially expressed miRNAs and metabolites yielded five pathways such as purine, glutathione, glycerophospholipid, inositol phosphate and ß-alanine to be significantly perturbed in GH. We present fourteen genes (LPCAT1, LPCAT2, DGKH, PISD, GPAT2, PTEN, SACM1L, PGM2, AMPD3, AK7, AK3, CNDP1, IDH2, and ODC1) and eight metabolites (xanthosine, xanthine, spermine, glycine, CDP-Choline, glyceraldehyde 3-phosphate, ß-alanine, and histidine) with potential to distinguish GH and HP. CONCLUSION: The differential expression of miRNAs, their target genes, altered metabolites and metabolic pathways in GH patients were identified for the first time in our study. Further, the altered miRNAs and metabolites were integrated to build their inter-connectivity network. The findings obtained from our study may be used as a valuable source to further unravel the molecular pathways associated with GH and also for the evaluation of prognostic markers.


Assuntos
Hipertensão Induzida pela Gravidez , MicroRNAs , Humanos , Feminino , Gravidez , Placenta/metabolismo , Hipertensão Induzida pela Gravidez/genética , Hipertensão Induzida pela Gravidez/metabolismo , Multiômica , Prognóstico , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , beta-Alanina/metabolismo
12.
Nanomedicine (Lond) ; 19(12): 1035-1050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686958

RESUMO

Background: To prepare ocular emulsions containing bipartitioned oil droplets to entrap cyclosporin A (0.05% w/w) and etodolac (0.2% w/w) by using castor, olive and silicon oils. Methods: The physicochemical characterizations of prepared emulsions were performed. The drug's biodistribution profiles and pharmacokinetic parameters from emulsions were checked using the ultraperformance liquid chromatography-tandem mass spectrometry method in the ocular tissues of the healthy rabbit eye model. Results: The emulsions displayed 365.13 ± 7.21 nm size and 26.45 ± 2.09 mV zeta potential. The ferrying of two drugs after releasing from emulsions occurred across corneal/conjunctival tissues to enter the vitreous and sclera following a single drop administration into the rabbit's eyes. Conclusion: The dual drug-loaded emulsions were more likely to produce synergistic anti-inflammatory activity for managing moderate-to-severe dry eye disease.


[Box: see text].


Assuntos
Ciclosporina , Emulsões , Etodolac , Coelhos , Animais , Emulsões/química , Ciclosporina/farmacocinética , Ciclosporina/administração & dosagem , Ciclosporina/química , Etodolac/química , Distribuição Tecidual , Tamanho da Partícula , Síndromes do Olho Seco/tratamento farmacológico , Óleo de Rícino/química , Cátions/química , Óleos de Silicone/química , Azeite de Oliva/química , Córnea/efeitos dos fármacos , Córnea/metabolismo , Soluções Oftálmicas/química , Humanos , Liberação Controlada de Fármacos
13.
JHEP Rep ; 6(2): 100974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283757

RESUMO

Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results: A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions: Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications: This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.

14.
Int J Biol Macromol ; 258(Pt 1): 128776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114014

RESUMO

For the first time, the co-delivery of chloroquine phosphate and flavopiridol by intra-articular route was achieved to provide local joint targeting in Complete Freund's Adjuvant-induced arthritis rat model. The presence of paired-bean structure onto the dispersed oil droplets of o/w nanosized emulsions allows efficient entrapment of two drugs (85.86-96.22 %). The dual drug-loaded emulsions displayed a differential in vitro drug release behavior, near normal cell viability in MTT assay, better cell uptake (internalization) and better reducing effect of mean immunofluorescence intensity of inflammatory proteins such as NF-κB and iNOS at in vitro RAW264.7 macrophage cell line. The radiographical study, ELISA test, RT-PCR study and H & E staining also indicated a reduction in joint tissue swelling, IL-6 and TNF-α levels diminution, fold change diminution in the mRNA expressions for NF-κB, IL-1ß, IL-6 and PGE2 and maintenance of near normal histology at bone cartilage interface respectively. The results of metabolomic pathway analysis performed by LC-MS/MS method using the rat blood (plasma) collected from disease control and dual drug-loaded emulsions treatment groups revealed a new follow-up study to understand not only the disease progression but also the formulation therapeutic efficacy assessment.


Assuntos
Artrite Experimental , Quitosana , Cloroquina/análogos & derivados , Flavonoides , Piperidinas , Ratos , Animais , NF-kappa B/metabolismo , Adjuvante de Freund/efeitos adversos , Quitosana/uso terapêutico , Interleucina-6 , Cromatografia Líquida , Emulsões/efeitos adversos , Seguimentos , Artrite Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia
15.
RSC Adv ; 13(38): 26640-26649, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37681043

RESUMO

The advancements in understanding the phenomenon of plasma interactions with matter, coupled with the development of CAPP devices, have resulted in an interdisciplinary research topic of significant importance. This has led to the integration of various fields of science, including plasma physics, chemistry, biomedical sciences, and engineering. The reactive oxygen species and reactive nitrogen species generated from cold atmospheric plasma on interaction with biomolecules like proteins and peptides form various supramolecular structures. CAPP treatment of amino acids, which are the fundamental building blocks of proteins, holds potential in creating self-assembled supramolecular architectures. In this work, we demonstrate the process of self-assembly of aromatic amino acid tryptophan (Trp) enantiomers (l-tryptophan and d-tryptophan) into ordered supramolecular assemblies induced by the reactive species generated by a cold atmospheric pressure helium plasma jet. These enantiomers of tryptophan form organized structures as evidenced by FE-SEM. To assess the impact of CAPP treatment on the observed assemblies, we employed various analytical techniques such as zeta potential, dynamic light scattering and FTIR spectroscopy. Also, photoluminescence and time-resolved lifetime measurements revealed the transfiguration of individual Trp enantiomers. The LC-ESI-QTOF-MS analysis demonstrated that CAPP irradiation led to the incorporation of oxygenated ions into the pure Trp molecule. These studies of the self-assembly of Trp due to ROS and RNS interactions will help us to understand the assembly environment. This knowledge may be utilized to artificially design and synthesize highly ordered functional supramolecular structures using CAPP.

16.
Chemosphere ; 317: 137830, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640981

RESUMO

Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.


Assuntos
Histidina , Fenol , Adulto Jovem , Feminino , Humanos , Fenol/análise , Exposição Ambiental/análise , Metaboloma , Metabolômica/métodos , Fenóis/análise , Biomarcadores
17.
Int J Pharm ; 630: 122445, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503849

RESUMO

This study aimed to explore extrusion three dimensional (3D) printing technology to develop praziquantel (PZQ)-loaded minicaplets and evaluate their in vitro and in vivo delivery capabilities. PZQ-loaded minicaplets were 3D printed using a fused deposition modelling (FDM) principle-based extrusion 3D printer and were further characterized by different in vitro physicochemical and sophisticated analytical techniques. In addition, the % PZQ entrapment and in vitro PZQ release performance were evaluated using chromatographic techniques. It was in vitro observed that PZQ was fully released in the gastric pH medium within the period of gastric emptying, that is, 120 min, from the PZQ-loaded 3D printed minicaplets. Furthermore, in vivo pharmacokinetic (PK) profiles of PZQ-loaded 3D printed minicaplets were systematically evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The PK profile of the PZQ-loaded 3D printed minicaplets was established using different parameters such as Cmax, Tmax, AUC0-t, AUC0-∞, and oral relative bioavailability (RBA). The Cmax value of pristine PZQ was found at 64.79 ± 13.99 ng/ml, while PZQ-loaded 3D printed minicaplets showed a Cmax of 263.16 ± 47.85 ng/ml. Finally, the PZQ-loaded 3D printed minicaplets showed 9.0-fold improved oral RBA compared with that of pristine PZQ (1.0-fold). Together, these observations potentiate the desired in vitro and improved in vivo delivery capabilities of PZQ from the PZQ-loaded 3D printed minicaplets.


Assuntos
Praziquantel , Espectrometria de Massas em Tandem , Praziquantel/química , Cromatografia Líquida , Impressão Tridimensional , Disponibilidade Biológica , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos , Comprimidos
18.
J Chromatogr Sci ; 61(7): 665-677, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36355561

RESUMO

A design of experiments (DoE)-driven RP-HPLC method conditions was employed to analyze simultaneously chloroquine (CQ) phosphate and flavopiridol (FLAP) in emulsions and solution. After subjecting the various critical method attributes to preliminary risk assessment and screening by Pareto-chart-based fractional factorial design, the 17 runs were produced in Box-Behnken design for optimization. Analysis of variance, lack of fit, prediction equations, 3D response surface plots and contour plots were used to evaluate the critical analytical attributes such as retention time, tailing factor and theoretical plate count. The optimized RP-HPLC method conditions include 262 nm as detection wavelength, 37°C temperature for column, 20-µl injection volume, 1-ml/min flow rate and mobile phase mixture [70:30 ratio of 0.4% triethylamine in methanol&sodium phosphate buffer (11 mM, pH 3.0)]. The studied validation parameters were found within the ICH-prescribed limits. Exposing the combined drug solution at oxidative stress condition resulted to diminish the FLAP recovery value (53.39 ± 0.86) and arrival of an extra chromatographic peak. However, the % drug entrapment efficiency values of 96.22 ± 2.47 and 85.86 ± 3.66, respectively, were noticed for CQ phosphate and FLAP in emulsions. Thus, DoE-driven approach could be helpful for systematically optimizing RP-HPLC method conditions.


Assuntos
Cloroquina , Cromatografia Líquida de Alta Pressão/métodos , Emulsões
19.
Pharmaceutics ; 15(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986839

RESUMO

Analytical sample preparation techniques are essential for assessing chemicals in various biological matrices. The development of extraction techniques is a modern trend in the bioanalytical sciences. We fabricated customized filaments using hot-melt extrusion techniques followed by fused filament fabrication-mediated 3D printing technology to rapidly prototype sorbents that extract non-steroidal anti-inflammatory drugs from rat plasma for determining pharmacokinetic profiles. The filament was prototyped as a 3D-printed sorbent for extracting small molecules using AffinisolTM, polyvinyl alcohol, and triethyl citrate. The optimized extraction procedure and parameters influencing the sorbent extraction were systematically investigated by the validated LC-MS/MS method. Furthermore, a bioanalytical method was successfully implemented after oral administration to determine the pharmacokinetic profiles of indomethacin and acetaminophen in rat plasma. The Cmax was found to be 0.33 ± 0.04 µg/mL and 27.27 ± 9.9 µg/mL for indomethacin and acetaminophen, respectively, at the maximum time (Tmax) (h) of 0.5-1 h. The mean area under the curve (AUC0-t) for indomethacin was 0.93 ± 0.17 µg h/mL, and for acetaminophen was 32.33± 10.8 µg h/mL. Owing to their newly customizable size and shape, 3D-printed sorbents have opened new opportunities for extracting small molecules from biological matrices in preclinical studies.

20.
J Mass Spectrom ; 58(8): e4964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464563

RESUMO

Phlorizin (PRZ) is a natural product that belongs to a class of dihydrochalcones. The unique pharmacological property of PRZ is to block glucose absorption or reabsorption through specific and competitive inhibitors of the sodium/glucose cotransporters (SGLTs) in the intestine (SGLT1) and kidney (SGLT2). This results in glycosuria by inhibiting renal reabsorption of glucose and can be used as an adjuvant treatment for type 2 diabetes. The pharmacokinetic profile, metabolites of the PRZ, and efficacy of metabolites towards SGLTs are unknown. Therefore, the present study on the characterization of hitherto unknown in vivo metabolites of PRZ and pharmacokinetic profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) and accurate mass measurements is undertaken. Plasma, urine, and feces samples were collected after oral administration of PRZ to Sprague-Dawley rats to identify in vivo metabolites. Furthermore, in silico efficacy of the identified metabolites was evaluated by docking study. PRZ at an intraperitoneal dose of 400 mg/kg showed maximum concentration in the blood to 439.32 ± 8.84 ng/mL at 1 h, while phloretin showed 14.38 ± 0.33 ng/mL at 6 h. The pharmacokinetic profile of PRZ showed that the maximum concentration lies between 1 and 2 h after dosing. Decreased blood glucose levels and maximum excretion of glucose in the urine were observed when the PRZ and metabolites were observed in plasma. The identification and characterization of PRZ metabolites by LC/ESI/MS/MS further revealed that the phase I metabolites of PRZ are hydroxy (mono-, di-, and tri-) and reduction. Phase II metabolites are O-methylated, O-acetylated, O-sulfated, and glucuronide metabolites of PRZ. Further docking study revealed that the metabolites diglucuronide metabolite of mono-hydroxylated PRZ and mono-glucuronidation of PRZ could be considered novel inhibitors of SGLT1 and SGLT2, respectively, which show better binding affinities than their parent compound PRZ and the known inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Animais , Ratos Sprague-Dawley , Hipoglicemiantes/farmacologia , Espectrometria de Massas em Tandem/métodos , Transportador 2 de Glucose-Sódio , Florizina/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Glucose/metabolismo , Sódio , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa