Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Immunol ; 212(9): 1457-1466, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497668

RESUMO

Increased receptor binding affinity may allow viruses to escape from Ab-mediated inhibition. However, how high-affinity receptor binding affects innate immune escape and T cell function is poorly understood. In this study, we used the lymphocytic choriomeningitis virus (LCMV) murine infection model system to create a mutated LCMV exhibiting higher affinity for the entry receptor α-dystroglycan (LCMV-GPH155Y). We show that high-affinity receptor binding results in increased viral entry, which is associated with type I IFN (IFN-I) resistance, whereas initial innate immune activation was not impaired during high-affinity virus infection in mice. Consequently, IFN-I resistance led to defective antiviral T cell immunity, reduced type II IFN, and prolonged viral replication in this murine model system. Taken together, we show that high-affinity receptor binding of viruses can trigger innate affinity escape including resistance to IFN-I resulting in prolonged viral replication.


Assuntos
Coriomeningite Linfocítica , Internalização do Vírus , Camundongos , Animais , Camundongos Knockout , Vírus da Coriomeningite Linfocítica/fisiologia , Replicação Viral , Camundongos Endogâmicos C57BL , Imunidade Inata
2.
Haematologica ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654683

RESUMO

Not available.

3.
Fetal Diagn Ther ; 51(4): 395-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710162

RESUMO

BACKGROUND: Acute leukemia is the most common pediatric cancer, with an incidence peak at 2-5 years of age. Despite the medical advances improving survival rates, children suffer from significant side effects of treatments as well as its high social and economic impact. The frequent prenatal origin of this developmental disease follows the two-hit carcinogenesis model established in the 70s: a first hit in prenatal life with the creation of genetic fusion lesions or aneuploidy in hematopoietic progenitor/stem cells, and usually a second hit in the pediatric age that converts the preleukemic clone into clinical leukemia. Previous research has mostly focused on postnatal environmental factors triggering the second hit. SUMMARY: There is scarce evidence on prenatal risk factors associated with the first hit. Mainly retrospective case-control studies suggested several environmental and lifestyle determinants as risk factors. If these associations could be confirmed, interventions focused on modifying prenatal factors might influence the subsequent risk of leukemia during childhood and reveal unexplored research avenues for the future. In this review, we aim to comprehensively summarize the currently available evidence on prenatal risk factors for the development of childhood leukemia. According to the findings of this review, parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Other factors such as socioeconomic status, consumption of caffeinated beverages, and smoking consumption have been suggested with inconclusive evidence. Additionally, investigating the association between prenatal factors and genetic lesions associated with childhood leukemia at birth is crucial. Prospective studies evaluating the link between lifestyle factors and genetic alterations could provide indirect evidence supporting new research avenues for leukemia prevention. Maternal diet and lifestyle factors are modifiable determinants associated with adverse perinatal outcomes that could be also related to preleukemic lesions. KEY MESSAGES: Parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Dedicating efforts to studying maternal lifestyle during pregnancy and its association with genetic lesions leading to childhood leukemia could lead to novel prevention strategies.


Assuntos
Leucemia , Estilo de Vida , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Fatores de Risco , Feminino , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Leucemia/epidemiologia , Leucemia/etiologia , Criança , Pré-Escolar
5.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714044

RESUMO

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Assuntos
Antineoplásicos , Decitabina , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Decitabina/farmacologia , Decitabina/química , Relação Estrutura-Atividade , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Peptoides/química , Peptoides/farmacologia , Peptoides/síntese química , Aminopiridinas , Benzamidas
6.
Heliyon ; 10(13): e34033, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071567

RESUMO

Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.

7.
Blood Adv ; 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008716

RESUMO

Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2D cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3D co-culture model combining human brain organoids and BCP-ALL-cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids as compared to non-ALL-cells. To validate translatability between organoid co-culture and in vivo murine models, we confirmed that targeting CNS leukemia relevant pathways like CD79a/Igα or CXCR4-SDF1 reduced the invasion of BCP-ALL-cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared to the non-invaded fraction revealed significant upregulation of AP-1 transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in ALL-PDX-cells recovered from the CNS compared to spleen blasts of mice transplanted with TCF3::PBX1+ PDX-cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1-gene JUN in patients initially diagnosed as CNS-positive compared to CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 BCP-ALL-patients. Our results suggest CNS-organoids as a novel model to investigate CNS-involvement and identify the AP-1 pathway as a critical driver of CNS-disease in BCP-ALL.

8.
J Clin Invest ; 134(7)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290093

RESUMO

The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.


Assuntos
Caxumba , Rubéola (Sarampo Alemão) , Criança , Adulto , Humanos , Lactente , Caxumba/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/prevenção & controle , Reprogramação Metabólica , Imunidade Treinada , Vacinação , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa