Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(20): 11056-11066, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159397

RESUMO

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteômica , RNA Helicases/química
2.
Nat Chem Biol ; 16(2): 150-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768034

RESUMO

Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g., cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome.


Assuntos
Sondas Moleculares/química , Proteômica/métodos , Enxofre/química , Triazóis/química , Tirosina/análise , Tirosina/química , Células A549 , Sítios de Ligação , Flúor/química , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Células HEK293 , Humanos , Sondas Moleculares/síntese química , Fosforilação , Fosfotirosina/química , Fosfotirosina/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ácidos Sulfínicos/química , Tirosina/metabolismo
3.
J Am Chem Soc ; 142(18): 8270-8280, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329615

RESUMO

Tuning reactivity of sulfur electrophiles is key for advancing click chemistry and chemical probe discovery. To date, activation of the sulfur electrophile for protein modification has been ascribed principally to stabilization of a fluoride leaving group (LG) in covalent reactions of sulfonyl fluorides and arylfluorosulfates. We recently introduced sulfur-triazole exchange (SuTEx) chemistry to demonstrate the triazole as an effective LG for activating nucleophilic substitution reactions on tyrosine sites of proteins. Here, we probed tunability of SuTEx for fragment-based ligand discovery by modifying the adduct group (AG) and LG with functional groups of differing electron-donating and -withdrawing properties. We discovered the sulfur electrophile is highly sensitive to the position of modification (AG versus LG), which enabled both coarse and fine adjustments in solution and proteome activity. We applied these reactivity principles to identify a large fraction of tyrosine sites (∼30%) on proteins (∼44%) that can be liganded across >1500 probe-modified sites quantified by chemical proteomics. Our proteomic studies identified noncatalytic tyrosine and phosphotyrosine sites that can be liganded by SuTEx fragments with site specificity in lysates and live cells to disrupt protein function. Collectively, we describe SuTEx as a versatile covalent chemistry with broad applications for chemical proteomics and protein ligand discovery.


Assuntos
Proteínas/química , Enxofre/química , Triazóis/química , Tirosina/química , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Proteômica , Relação Estrutura-Atividade
4.
Curr Top Microbiol Immunol ; 420: 175-210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30128827

RESUMO

As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.


Assuntos
Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunidade Adaptativa/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Proteoma/química , Transdução de Sinais/imunologia
5.
Mol Pharmacol ; 94(5): 1246-1255, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158316

RESUMO

Ritanserin was tested in the clinic as a serotonin receptor inverse agonist but recently emerged as a novel kinase inhibitor with potential applications in cancer. Here, we discovered that ritanserin induced apoptotic cell death of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells via a serotonin-independent mechanism. We used quantitative chemical proteomics to reveal a ritanserin-dependent kinase network that includes key mediators of lipid [diacylglycerol kinase α, phosphatidylinositol 4-kinase ß] and protein [feline encephalitis virus-related kinase, rapidly accelerated fibrosarcoma (RAF)] signaling, metabolism [eukaryotic elongation factor 2 kinase, eukaryotic translation initiation factor 2-α kinase 4], and DNA damage response [tousled-like kinase 2] to broadly kill lung tumor cell types. Whereas ritanserin exhibited polypharmacology in NSCLC proteomes, this compound showed unexpected specificity for c-RAF in the SCLC subtype, with negligible activity against other kinases mediating mitogen-activated protein kinase signaling. Here we show that ritanserin blocks c-RAF but not B-RAF activation of established oncogenic signaling pathways in live cells, providing evidence in support of c-RAF as a key target mediating its anticancer activity. Given the role of c-RAF activation in RAS-mutated cancers resistant to clinical B-RAF inhibitors, our findings may have implications in overcoming resistance mechanisms associated with c-RAF biology. The unique target landscape combined with acceptable safety profiles in humans provides new opportunities for repositioning ritanserin in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteômica , Ritanserina/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/efeitos dos fármacos , Serotonina/metabolismo
6.
Proteomics ; 17(6)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28195392

RESUMO

Discovery proteomics experiments include many options for sample preparation and MS data acquisition, which are capable of creating datasets for quantifying thousands of proteins. To define a strategy that would produce a dataset with sufficient content while optimizing required resources, we compared (1) single-sample LC-MS/MS with data-dependent acquisition to single-sample LC-MS/MS with data-independent acquisition and (2) peptide fractionation with label-free (LF) quantification to peptide fractionation with relative quantification of chemically labeled peptides (sixplex tandem mass tags (TMT)). These strategies were applied to the same set of four frozen lung squamous cell carcinomas and four adjacent tissues, and the overall outcomes of each experiment were assessed. We identified 6656 unique protein groups with LF, 5535 using TMT, 3409 proteins from single-sample analysis with data-independent acquisition, and 2219 proteins from single-sample analysis with data-dependent acquisition. Pathway analysis indicated the number of proteins per pathway was proportional to the total protein identifications from each method, suggesting limited biological bias between experiments. The results suggest the use of single-sample experiments as a rapid tissue assessment tool and digestion quality control or as a technique to maximize output from limited samples and use of TMT or LF quantification as methods for larger amounts of tumor tissue with the selection being driven mainly by instrument time limitations. Data are available via ProteomeXchange with identifiers PXD004682, PXD004683, PXD004684, and PXD005733.


Assuntos
Cromatografia Líquida/métodos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Humanos , Peptídeos/metabolismo , Coloração e Rotulagem
7.
J Proteome Res ; 15(12): 4747-4754, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27680298

RESUMO

With continuously increasing scale and depth of coverage in affinity proteomics (AP-MS) data, the analysis and visualization is becoming more challenging. A number of tools have been developed to identify high-confidence interactions; however, a cohesive and intuitive pipeline for analysis and visualization is still needed. Here we present Automated Processing of SAINT Templated Layouts (APOSTL), a freely available Galaxy-integrated software suite and analysis pipeline for reproducible, interactive analysis of AP-MS data. APOSTL contains a number of tools woven together using Galaxy workflows, which are intuitive for the user to move from raw data to publication-quality figures within a single interface. APOSTL is an evolving software project with the potential to customize individual analyses with additional Galaxy tools and widgets using the R web application framework, Shiny. The source code, data, and documentation are freely available from GitHub ( https://github.com/bornea/APOSTL ) and other sources.


Assuntos
Proteômica/métodos , Fluxo de Trabalho , Biologia Computacional/métodos , Software , Interface Usuário-Computador
8.
Cell Chem Biol ; 29(12): 1709-1720.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36476517

RESUMO

RNA granules are cytoplasmic condensates that organize biochemical and signaling complexes in response to cellular stress. Functional proteomic investigations under RNA-granule-inducing conditions are needed to identify protein sites involved in coupling stress response with ribonucleoprotein regulation. Here, we apply chemical proteomics using sulfonyl-triazole (SuTEx) probes to capture cellular responses to oxidative and nutrient stress. The stress-responsive tyrosine and lysine sites detected mapped to known proteins involved in processing body (PB) and stress granule (SG) pathways, including LSM14A, FUS, and Enhancer of mRNA-decapping protein 3 (EDC3). Notably, disruption of EDC3 tyrosine 475 (Y475) resulted in hypo-phosphorylation at S161 and S131 and altered protein-protein interactions (PPIs) with decapping complex components (DDX6, DCP1A/B) and 14-3-3 proteins. This resulting mutant form of EDC3 was capable of rescuing the PB-deficient phenotype of EDC3 knockout cells. Taken together, our findings identify Y475 as an arsenic-responsive site that regulates RNA granule formation by coupling EDC3 post-translational modification and PPI states.


Assuntos
Proteômica , Ribonucleoproteínas Nucleares Pequenas , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Tirosina , Condensados Biomoleculares , RNA Mensageiro/metabolismo
9.
RSC Chem Biol ; 2(2): 322-337, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095850

RESUMO

Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.

10.
Chem Sci ; 12(9): 3295-3307, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34164099

RESUMO

Sulfonyl-triazoles are a new class of electrophiles that mediate covalent reaction with tyrosine residues on proteins through sulfur-triazole exchange (SuTEx) chemistry. Recent studies demonstrate the broad utility and tunability of SuTEx chemistry for chemical proteomics and protein ligand discovery. Here, we present a strategy for mapping protein interaction networks of structurally complex binding elements using functionalized SuTEx probes. We show that the triazole leaving group (LG) can serve as a releasable linker for embedding hydrophobic fragments to direct molecular recognition while permitting efficient proteome-wide identification of binding sites in live cells. We synthesized a series of SuTEx probes functionalized with a lipid kinase fragment binder for discovery of ligandable tyrosines residing in catalytic and regulatory domains of protein and metabolic kinases in live cells. We performed competition studies with kinase inhibitors and substrates to demonstrate that probe binding is occurring in an activity-dependent manner. Our functional studies led to discovery of probe-modified sites within the C2 domain that were important for downregulation of protein kinase C-alpha in response to phorbol ester activation. Our proof of concept studies highlight the triazole LG of SuTEx probes as a traceless linker for locating protein binding sites targeted by complex recognition elements in live cells.

11.
Proteomes ; 4(2): 16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28154798

RESUMO

One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa