RESUMO
Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.
Assuntos
Fazendeiros/história , Genoma Humano/genética , Genômica , Migração Humana/história , Agricultura/história , Ásia/etnologia , DNA Antigo , Europa (Continente) , Feminino , Genética Populacional , Pradaria , História Antiga , Humanos , Masculino , Distribuição por SexoRESUMO
Dogs are among the most variable species today, but little is known about the morphological variability in the early phases of their history. The Neolithic transition to farming may have resulted in an early morphological diversification as a result of changes in the anthropic environment or intentional selection on specific morphologies. Here, we describe the variability and modularity in mandible form by comparing 525 dog mandibles from European archaeological sites ranging from 8100 to 3000 cal. BC to a reference sample of modern dogs, wolves, and dingoes. We use three-dimensional geometric morphometrics to quantify the form of complete and fragmented mandibles. We demonstrate that an important morphological variability already existed before the Bronze Age in Europe, yet the largest, smallest, most brachycephalic or dolichocephalic extant dogs have no equivalent in the archaeological sample, resulting in a lower variation compared to modern relatives. The covariation between the anterior and posterior parts of the mandible is lower in archaeological dogs, suggesting a low degree of intentional human selection in early periods. The mandible of modern and ancient dogs differs in functionally important areas, possibly reflecting differences in diet, competition, or the implication of ancient dogs in hunting or defence.
Assuntos
Lobos , Agricultura , Animais , Arqueologia , Cães , Europa (Continente) , História Antiga , Mandíbula/anatomia & histologiaRESUMO
Archaeological evidence indicates that pig domestication had begun by â¼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers â¼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.
Assuntos
DNA Antigo , DNA Mitocondrial/genética , Domesticação , Fluxo Gênico , Filogenia , Suínos/genética , Animais , Europa (Continente) , História Antiga , Oriente Médio , Pigmentação da Pele/genéticaRESUMO
The spread of early farming across Europe from its origins in Southwest Asia was a culturally transformative process which took place over millennia. Within regions, the pace of the transition was probably related to the particular climatic and environmental conditions encountered, as well as the nature of localized hunter-gatherer and farmer interactions. The establishment of farming in the interior of the Balkans represents the first movement of Southwest Asian livestock beyond their natural climatic range, and widespread evidence now exists for early pottery being used extensively for dairying. However, pottery lipid residues from sites in the Iron Gates region of the Danube in the northern Balkans show that here, Neolithic pottery was being used predominantly for processing aquatic resources. This stands out not only within the surrounding region but also contrasts markedly with Neolithic pottery use across wider Europe. These findings provide evidence for the strategic diversity within the wider cultural and economic practices during the Neolithic, with this exceptional environmental and cultural setting offering alternative opportunities despite the dominance of farming in the wider region.
Assuntos
Agricultura/métodos , Arqueologia , Fazendeiros , Romênia , SérviaRESUMO
Near Eastern Neolithic farmers introduced several species of domestic plants and animals as they dispersed into Europe. Dogs were the only domestic species present in both Europe and the Near East prior to the Neolithic. Here, we assessed whether early Near Eastern dogs possessed a unique mitochondrial lineage that differentiated them from Mesolithic European populations. We then analysed mitochondrial DNA sequences from 99 ancient European and Near Eastern dogs spanning the Upper Palaeolithic to the Bronze Age to assess if incoming farmers brought Near Eastern dogs with them, or instead primarily adopted indigenous European dogs after they arrived. Our results show that European pre-Neolithic dogs all possessed the mitochondrial haplogroup C, and that the Neolithic and Post-Neolithic dogs associated with farmers from Southeastern Europe mainly possessed haplogroup D. Thus, the appearance of haplogroup D most probably resulted from the dissemination of dogs from the Near East into Europe. In Western and Northern Europe, the turnover is incomplete and haplogroup C persists well into the Chalcolithic at least. These results suggest that dogs were an integral component of the Neolithic farming package and a mitochondrial lineage associated with the Near East was introduced into Europe alongside pigs, cows, sheep and goats. It got diluted into the native dog population when reaching the Western and Northern margins of Europe.
Assuntos
Arqueologia , DNA Mitocondrial , Cães/genética , Agricultura , Animais , Cães/classificação , Europa (Continente) , Fósseis , Haplótipos , Humanos , Análise de Sequência de DNARESUMO
Climatic oscillations are considered primary factors influencing the distribution of various life forms on Earth. Large species adapted to cold climates are particularly vulnerable to extinction due to the climate changes. In our study, we investigated whether the temperature increase since the Late Pleistocene and the contraction of environmental niche during the Holocene were the main factors contributing to the decreasing range of moose (Alces alces) in Europe. We also examined whether there were significant differences in environmental conditions between areas inhabited by moose in Europe and Asia, that could support the division of moose into western and eastern forms, as suggested by genetic and morphological data. We analysed environmental conditions in locations of 655 subfossil and modern moose occurrences over the past 50,000â¯years in Eurasia. We found that the most limiting climatic factor for the moose distribution since the Late Pleistocene was July temperature. >90â¯% of moose records were found in areas where the mean summer temperature was below 19⯰C, with July temperatures showing over 3 times narrower interquartile range compared to January temperatures. We identified significant differences in environmental conditions between areas inhabited by the European and Asiatic moose. In Europe, the species occurred in regions with milder climates, higher primary productivity, and more frequently within forest biomes compared to Asiatic individuals. The moose range shifted more in the west-east than in the south-north direction during the Holocene climate warming in Europe. We concluded that although the area of suitable moose habitat has increased since 12-8â¯kaâ¯years BP, as demonstrated by environmental niche modeling, the retreat of A. alces in large areas of Europe was likely caused by anthropogenic landscape change (e.g., deforestation) and overhunting by humans during the late Holocene rather than by climate warming during the Pleistocene to Holocene transition.
RESUMO
In 1968, excavations in the Climente II cave in the Iron Gates gorge of the River Danube in southwest Romania unearthed the skeleton of an adult male. The burial was assumed to be of Late Pleistocene age because of the presence of Late Upper Palaeolithic (LUP) artefacts in the cave. However, there was no strong supporting stratigraphic evidence, and the body position is reminiscent of Early Neolithic burial practice in the region. Here, we report the results of radiocarbon and stable isotope analyses of the Climente II skeleton, which show that the skeleton dates to the Bølling-Allerød Interstadial ~14,500 cal BP. This is several millennia older than any previously dated human remains from the Iron Gates region and confirms its status as the oldest known burial from Romania. The stable isotope results indicate a diet with an emphasis on aquatic resources, contrary to the commonly held view that the LUP inhabitants of the Iron Gates subsisted mainly by hunting large land mammals.
Assuntos
Osso e Ossos/química , Sepultamento , Dieta , Adulto , Animais , Isótopos de Carbono/análise , Peixes/metabolismo , Fósseis , Humanos , Isótopos/análise , Masculino , Isótopos de Nitrogênio/análise , Datação Radiométrica , RomêniaRESUMO
The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7]. Here we use ancient DNA to investigate the relationship between hunter-gatherers and farmers in the Lower Danube basin, a geographically intermediate area that is characterized by a rapid Neolithic transition but also by the presence of archaeological evidence that points to cultural exchange, and thus possible admixture, between hunter-gatherers and farmers. We recovered four human paleogenomes (1.1× to 4.1× coverage) from Romania spanning a time transect between 8.8 thousand years ago (kya) and 5.4 kya and supplemented them with two Mesolithic genomes (1.7× and 5.3×) from Spain to provide further context on the genetic background of Mesolithic Europe. Our results show major Western hunter-gatherer (WHG) ancestry in a Romanian Eneolithic sample with a minor, but sizeable, contribution from Anatolian farmers, suggesting multiple admixture events between hunter-gatherers and farmers. Dietary stable-isotope analysis of this sample suggests a mixed terrestrial/aquatic diet. Our results provide support for complex interactions among hunter-gatherers and farmers in the Danube basin, demonstrating that in some regions, demic and cultural diffusion were not mutually exclusive, but merely the ends of a continuum for the process of Neolithization.
Assuntos
Arqueologia , DNA Antigo/análise , Dieta , Genoma Humano , Migração Humana , Evolução Cultural , Fazendeiros , Humanos , Estilo de Vida , RomêniaRESUMO
Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large 'domestic shape' specimens were present from the outset of the Romanian Neolithic (6100-5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory.
Assuntos
Evolução Biológica , DNA/genética , Fósseis , Hibridização Genética , Paleontologia/métodos , Sus scrofa/anatomia & histologia , Sus scrofa/genética , Animais , Pesos e Medidas Corporais , DNA/história , História Antiga , Humanos , Romênia , Dente/anatomia & histologia , Dente/químicaRESUMO
We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-ß-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant K(B) allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10,000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.