Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(12): 5482-5497, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218673

RESUMO

INTRODUCTION: Hyperphosphorylation and aggregation of the microtubule-associated protein tau cause the development of tauopathies, such as Alzheimer's disease and frontotemporal dementia (FTD). We recently uncovered a causal link between constitutive serotonin receptor 7 (5-HT7R) activity and pathological tau aggregation. Here, we evaluated 5-HT7R inverse agonists as novel drugs in the treatment of tauopathies. METHODS: Based on structural homology, we screened multiple approved drugs for their inverse agonism toward 5-HT7R. Therapeutic potential was validated using biochemical, pharmacological, microscopic, and behavioral approaches in different cellular models including tau aggregation cell line HEK293 tau bimolecular fluorescence complementation, primary mouse neurons, and human induced pluripotent stem cell-derived neurons carrying an FTD-associated tau mutation as well as in two mouse models of tauopathy. RESULTS: Antipsychotic drug amisulpride is a potent 5-HT7R inverse agonist. Amisulpride ameliorated tau hyperphosphorylation and aggregation in vitro. It further reduced tau pathology and abrogated memory impairment in mice. DISCUSSION: Amisulpride may be a disease-modifying drug for tauopathies.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Tauopatias , Humanos , Camundongos , Animais , Agonismo Inverso de Drogas , Amissulprida/uso terapêutico , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia
2.
Biomed Pharmacother ; 177: 116867, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889634

RESUMO

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.

3.
Fluids Barriers CNS ; 18(1): 36, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344390

RESUMO

BACKGROUND: In vitro models based on brain capillary endothelial cells (BCECs) are among the most versatile tools in blood-brain barrier research for testing drug penetration into the brain and how this is affected by efflux transporters such as P-glycoprotein (Pgp). However, compared to freshly isolated brain capillaries or primary BCECs, the expression of Pgp in immortalized BCEC lines is markedly lower, which prompted us previously to transduce the widely used human BCEC line hCMEC/D3 with a doxycycline-inducible MDR1-EGFP fusion plasmid. The EGFP-labeled Pgp in these cells allows studying the localization and trafficking of the transporter and how these processes are affected by drug exposure. Here we used this strategy for the rat BCEC line RBE4 and performed a face-to-face comparison of RBE4 and hCMEC/D3 wild-type (WT) and MDR1-EGFP transduced cells. METHODS: MDR1-EGFP-transduced variants were derived from WT cells by lentiviral transduction, using an MDR1-linker-EGFP vector. Localization, trafficking, and function of Pgp were compared in WT and MDR1-EGFP transduced cell lines. Primary cultures of rat BCECs and freshly isolated rat brain capillaries were used for comparison. RESULTS: All cells exhibited typical BCEC morphology. However, significant differences were observed in the localization of Pgp in that RBE4-MDR1-EGFP cells expressed Pgp primarily at the plasma membrane, whereas in hCMEC/D3 cells, the Pgp-EGFP fusion protein was visible both at the plasma membrane and in endolysosomal vesicles. Exposure to doxorubicin increased the number of Pgp-EGFP-positive endolysosomes, indicating a lysosomotropic effect. Furthermore, lysosomal trapping of doxorubicin was observed, likely contributing to the protection of the cell nucleus from damage. In cocultures of WT and MDR1-EGFP transduced cells, intercellular Pgp-EGFP trafficking was observed in RBE4 cells as previously reported for hCMEC/D3 cells. Compared to WT cells, the MDR1-EGFP transduced cells exhibited a significantly higher expression and function of Pgp. However, the junctional tightness of WT and MDR1-EGFP transduced RBE4 and hCMEC/D3 cells was markedly lower than that of primary BCECs, excluding the use of the cell lines for studying vectorial drug transport. CONCLUSIONS: The present data indicate that MDR1-EGFP transduced RBE4 cells are an interesting tool to study the biogenesis of lysosomes and Pgp-mediated lysosomal drug trapping in response to chemotherapeutic agents and other compounds at the level of the blood-brain barrier.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/análise , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Animais , Barreira Hematoencefálica/química , Linhagem Celular , Linhagem Celular Transformada , Células Endoteliais/química , Proteínas de Fluorescência Verde/análise , Humanos , Microscopia de Fluorescência/métodos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Especificidade da Espécie
4.
Neuropharmacology ; 180: 108297, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890589

RESUMO

Mechanistic target of rapamycin (mTOR) regulates cell proliferation, growth and survival, and is activated in cancer and neurological disorders, including epilepsy. The rapamycin derivative ("rapalog") everolimus, which allosterically inhibits the mTOR pathway, is approved for the treatment of partial epilepsy with spontaneous recurrent seizures (SRS) in individuals with tuberous sclerosis complex (TSC). In contrast to the efficacy in TSC, the efficacy of rapalogs on SRS in other types of epilepsy is equivocal. Furthermore, rapalogs only poorly penetrate into the brain and are associated with peripheral adverse effects, which may compromise their therapeutic efficacy. Here we compare the antiseizure efficacy of two novel, brain-permeable ATP-competitive and selective mTORC1/2 inhibitors, PQR620 and PQR626, and the selective dual pan-PI3K/mTORC1/2 inhibitor PQR530 in two mouse models of chronic epilepsy with SRS, the intrahippocampal kainate (IHK) mouse model of acquired temporal lobe epilepsy and Tsc1GFAP CKO mice, a well-characterized mouse model of epilepsy in TSC. During prolonged treatment of IHK mice with rapamycin, everolimus, PQR620, PQR626, or PQR530; only PQR620 exerted a transient antiseizure effect on SRS, at well tolerated doses whereas the other compounds were ineffective. In contrast, all of the examined compounds markedly suppressed SRS in Tsc1GFAP CKO mice during chronic treatment at well tolerated doses. Thus, against our expectation, no clear differences in antiseizure efficacy were found across the three classes of mTOR inhibitors examined in mouse models of genetic and acquired epilepsies. The main advantage of the novel 1,3,5-triazine derivatives is their excellent tolerability compared to rapalogs, which would favor their development as new therapies for TORopathies such as TSC.


Assuntos
Epilepsias Parciais/tratamento farmacológico , Everolimo/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Sirolimo/uso terapêutico , Esclerose Tuberosa/tratamento farmacológico , Animais , Modelos Animais de Doenças , Epilepsias Parciais/fisiopatologia , Everolimo/farmacologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Resultado do Tratamento , Esclerose Tuberosa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa