Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202508

RESUMO

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues-the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins' expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.


Assuntos
Endométrio/citologia , Infertilidade Feminina/terapia , Menstruação , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Biomarcadores , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Decídua/citologia , Decídua/metabolismo , Feminino , Humanos , Imunofenotipagem , Infertilidade Feminina/etiologia , Proteoma , Proteômica/métodos
2.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921161

RESUMO

Metabolic landscape and sensitivity to apoptosis induction play a crucial role in acute myeloid leukemia (AML) resistance. Therefore, we investigated the effect of metformin, a medication that also acts as an inhibitor of oxidative phosphorylation (OXPHOS), and MCL-1 inhibitor S63845 in AML cell lines NB4, KG1 and chemoresistant KG1A cells. The impact of compounds was evaluated using fluorescence-based metabolic flux analysis, assessment of mitochondrial Δψ and cellular ROS, trypan blue exclusion, Annexin V-PI and XTT tests for cell death and cytotoxicity estimations, also RT-qPCR and Western blot for gene and protein expression. Treatment with metformin resulted in significant downregulation of OXPHOS; however, increase in glycolysis was observed in NB4 and KG1A cells. In contrast, treatment with S63845 slightly increased the rate of OXPHOS in KG1 and KG1A cells, although it profoundly diminished the rate of glycolysis. Generally, combined treatment had stronger inhibitory effects on cellular metabolism and ATP levels. Furthermore, results revealed that treatment with metformin, S63845 and their combinations induced apoptosis in AML cells. In addition, level of apoptotic cell death correlated with cellular ROS induction, as well as with downregulation of tumor suppressor protein MYC. In summary, we show that modulation of redox-stress could have a potential anticancer activity in AML cells.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide/tratamento farmacológico , Metformina/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Oxirredução , Pirimidinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/uso terapêutico
3.
J Cell Biochem ; 121(2): 1811-1822, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633234

RESUMO

Human mesenchymal stem cells isolated from amniotic fluid (AF-MSCs) demonstrate the potency for self-renewal and multidifferentiation, and can, therefore, be a potential alternative source of stem cells adapted for therapeutic purposes. The object of this study is to evaluate the efficacy of MSCs from AF when the pregnancy is normal or when the fetus is affected during pregnancy to differentiate into mesodermal lineage tissues and to elucidate epigenetic states responsible for terminal adipogenic and osteogenic differentiation. The morphology of AF-MSCs from two cell sources and the expression of the cell surface-specific (CD44, CD90, and CD105) markers and pluripotency (Oct4, Nanog, Sox2, and Rex1) genes were quite similar and underwent mesodermal lineage differentiation because this is shown by the typical cell morphology and of genes' expression specific for adipogenic (peroxisome proliferator-activated receptor-É£, adiponectin) and osteoblastic (alkaline phosphatase, osteopontin, and osteocalcin) differentiation. Terminal lineage-specific differentiation was related to differential expression of miR-17, miR-21, miR-34a, and miR-146a, decreased levels of acetylated H4 and H3K9, trimethylated H3K4 and H3K9, and the retention of H3K27me3 along with a reduction in the levels of HDAC1, DNMT1, and PRC1/2 proteins (BMI1/SUZ12). No significant distinction could be identified in the levels of expression of all epigenetic or pluripotency markers between undifferentiated MSCs isolated from AF of normal gestation and pregnancy where the fetus was damaged and between those differentiated toward adipocytes or osteoblasts. The expressional changes of those marks and microRNAs that occurred during terminal differentiation to mesodermal tissues indicate subtle epigenetic regulation in AF-MSCs when the condition of the fetus is healthy normal or diseased. More detailed studies of epigenetic mechanisms may offer a better understanding of AF-MSCs differentiation in fetus-diseased conditions and their usage in an autologous therapeutic application and prenatal disease research.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Linhagem da Célula , Doenças Fetais/patologia , Feto/citologia , Células-Tronco Mesenquimais/citologia , Mesoderma/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Líquido Amniótico/metabolismo , Doenças Fetais/genética , Doenças Fetais/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo
4.
Mol Carcinog ; 58(11): 2008-2016, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31385375

RESUMO

Treatment of acute myeloid leukemia (AML) is still a challenge because of common relapses or resistance to treatment. Therefore, the development of new therapeutic approaches is necessary. Various studies have shown that certain cancers, including some chemoresistant AML subsets, have upregulated oxidative phosphorylation. In this study, we aimed to assess treatment-resistant AML patients' cell modulation using oxidative phosphorylation inhibitors metformin and atovaquone alone and in various combinations with cytosine analog cytarabine and apoptosis inducer venetoclax. Metabolic activity analysis using Agilent Seahorse XF Extracellular Flux Analyzer revealed that peripheral blood mononuclear cells' metabolic state was different among treatment-resistant AML patients. We demonstrated that metformin decreased therapy-resistant-AML cell oxidative phosphorylation ex vivo, cotreatment with cytarabine and venetoclax slightly increased the effect. However, treatment with atovaquone did not have a marked effect in our experiment. Cell treatment had a slight effect on cell proliferation inhibition; combination of metformin, cytarabine, and venetoclax had the strongest effect. Moreover, a slightly higher effect on cell proliferation and cell cycle regulation was demonstrated in the cells with higher initial oxidative phosphorylation rate as demonstrated by gene expression analysis using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Proteomic analysis by liquid chromatography-mass spectrometry demonstrated that chemoresistant AML cell treatment with metformin modulated metabolic pathways, while metformin combination with cytarabine and venetoclax boosted the effect. We suggest that oxidative phosphorylation inhibition is effective but not sufficient for chemoresistant AML treatment. Indeed, it causes anticancerous changes that might have an important additive role in combinatory treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Metformina/farmacologia , Proteômica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Proteínas de Neoplasias/genética , Fosforilação Oxidativa/efeitos dos fármacos
5.
Int J Mol Sci ; 16(8): 18252-69, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26287160

RESUMO

Today, cancer is understood as an epigenetic as well as genetic disease. The main epigenetic hallmarks of the cancer cell are DNA methylation and histone modifications. Proteins such as histone deacetylases (HDACs) that cause modifications of histones and other proteins can be targets for novel anticancer agents. Recently, interest in compounds that can inhibit HDACs increased, and now there are many HDACs inhibitors (HDACIs) available with different chemical structures, biological and biochemical properties; hopefully some of them will succeed, probably in combination with other agents, in cancer therapies. In our study we focused on the novel HDACI-BML-210. We found that BML-210 (N-phenyl-N'-(2-Aminophenyl)hexamethylenediamide) inhibits the growth of NB4 cells in dose- and time-dependent manner. In this study we also examined how expression and activity of HDACs are affected after leukemia cell treatment with BML-210. Using a mass spectrometry method we identified proteins that changed expression after treatment with BML-210. We prepared RT-PCR analysis of these genes and the results correlated with proteomic data. Based on these and other findings from our group, we suggest that HDACIs, like BML-210, can be promising anticancer agents in promyelocytic leukemia treatment.


Assuntos
Anilidas/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Leucemia Promielocítica Aguda/genética , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Proteoma , Proteômica/métodos
6.
BMC Cell Biol ; 15: 4, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24443786

RESUMO

BACKGROUND: Epigenetic regulation is known to affect gene expression, and recent research shows that aberrant DNA methylation patterning and histone modifications may play a role in leukemogenesis. In order to highlight the co-operation of epigenetic mechanisms acting during the latter process it is important to clarify their potential as biomarkers of granulocytic differentiation. RESULTS: In this study we investigated epigenetic alterations in human hematopoietic cells at a distinct differentiation stages: primary hematopoietic CD34+ cells, KG1 myeloid leukemic cells, whose development is stopped at early stage of differentiation, and mature neutrophils. We focused on the epigenetic status of cell cycle regulating (p15, p16) and differentiation related (E-cadherin and RARß) genes. We found that the methylation level in promoter regions of some of these genes was considerably higher in KG1 cells and lower in CD34+ cells and human neutrophils. As examined and evaluated by computer-assisted methods, histone H3 and H4 modifications, i.e. H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc, were similar in CD34+ cells and human mature neutrophils. By contrast, in the KG1 cells, histone H3 and H4 modifications were quite high and increased after induction of granulocytic differentiation with the HDAC inhibitor phenyl butyrate. CONCLUSIONS: We found the methylation status of the examined gene promoters and histone modifications to be characteristically associated with the hematopoietic cell progenitor state, induced to differentiate myeloid KG1 cells and normal blood neutrophils. This could be achieved through epigenetic regulation of E-cadherin, p15, p16 and RARß genes expression caused by DNA methylation/demethylation, core and linker histones distribution in stem hematopoietic cells, induced to differentiation KG1 cells and mature human neutrophils, as well as the histone modifications H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc in relation to hematopoietic cell differentiation to granulocyte. These findings also suggest them as potentially important biomarkers of hematopoietic cell granulocytic differentiation and could be valuable for leukemia induced differentiation therapy.


Assuntos
Antígenos CD34/metabolismo , Epigênese Genética , Granulócitos/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides/metabolismo , Neutrófilos/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Metilação de DNA , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Células Mieloides/citologia , Neutrófilos/citologia , Fenilbutiratos/farmacologia , Regiões Promotoras Genéticas , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
7.
Genes (Basel) ; 15(5)2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790277

RESUMO

Acute myeloid leukemia is the second most frequent type of leukemia in adults. Due to a high risk of development of chemoresistance to first-line chemotherapy, the survival rate of patients in a 5-year period is below 30%. One of the reasons is that the AML population is heterogeneous, with cell populations partly composed of very primitive CD34+CD38- hematopoietic stem/progenitor cells, which are often resistant to chemotherapy. First-line treatment with cytarabine and idarubicin fails to inhibit the proliferation of CD34+CD38- cells. In this study, we investigated Metformin's effect with or without first-line conventional chemotherapy, or with other drugs like venetoclax and S63845, on primitive and undifferentiated CD34+ AML cells in order to explore the potential of Metformin or S63845 to serve as adjuvant therapy for AML. We found that first-line conventional chemotherapy treatment inhibited the growth of cells and arrested the cells in the S phase of the cell cycle; however, metformin affected the accumulation of cells in the G2/M phase. We observed that CD34+ KG1a cells respond better to lower doses of cytarabine or idarubicin in combination with metformin. Also, we determined that treatment with cytarabine, venetoclax, and S63845 downregulated the strong tendency of CD34+ KG1a cells to form cell aggregates in culture due to the downregulation of leukemic stem cell markers like CD34 and CD44, as well as adhesion markers. Also, we found that idarubicin slightly upregulated myeloid differentiation markers, CD11b and CD14. Treatment with cytarabine, idarubicin, venetoclax, metformin, and S63845 upregulated some cell surface markers like HLA-DR expression, and metformin upregulated CD9, CD31, and CD105 cell surface marker expression. In conclusion, we believe that metformin has the potential to be used as an adjuvant in the treatment of resistant-to-first-line-chemotherapy AML cells. Also, we believe that the results of our study will stimulate further research and the potential use of changes in the expression of cell surface markers in the development of new therapeutic strategies.


Assuntos
Antígenos CD34 , Citarabina , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Metformina , Humanos , Metformina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Citarabina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Idarubicina/farmacologia
8.
Front Bioeng Biotechnol ; 11: 1140781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122871

RESUMO

Cryopreservation of placenta tissue for long-term storage provides the opportunity in the future to isolate mesenchymal stromal cells that could be used for cell therapy and regenerative medicine. Despite being widely used, the established cryopreservation protocols for freezing and thawing still raise concerns about their impact on molecular characteristics, such as epigenetic regulation. In our study, we compared the characteristics of human placental mesenchymal stromal cells (hPMSCs) isolated from fresh (native) and cryopreserved (cryo) placenta tissue. We assessed and compared the characteristics of native and cryo hPMSCs such as morphology, metabolic and differentiation potential, expression of cell surface markers, and transcriptome. No significant changes in immunophenotype and differentiation capacity between native and cryo cells were observed. Furthermore, we investigated the epigenetic changes and demonstrated that both native and cryo hPMSCs express only slight variations in the epigenetic profile, including miRNA levels, DNA methylation, and histone modifications. Nevertheless, transcriptome analysis defined the upregulation of early-senescence state-associated genes in hPMSCs after cryopreservation. We also evaluated the ability of hPMSCs to improve pregnancy outcomes in mouse models. Improved pregnancy outcomes in a mouse model confirmed that isolated placental cells both from native and cryo tissue have a positive effect on the restoration of the reproductive system. Still, the native hPMSCs possess better capacity (up to 66%) in comparison with cryo hPMSCs (up to 33%) to restore fertility in mice with premature ovarian failure. Our study demonstrates that placental tissue can be cryopreserved for long-term storage with the possibility to isolate mesenchymal stromal cells that retain characteristics suitable for therapeutic use.

9.
Front Cell Dev Biol ; 11: 1227487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731819

RESUMO

Endometrial-factor induced infertility remains one of the most significant pathology among all fertility disorders. Stem cell-based therapy is considered to be the next-generation approach. However, there are still issues about successfully retrieving human endometrium-derived mesenchymal stem/stromal cells (hEnMSCs). Moreover, we need to establish a better understanding of the effect of hEnMSCs on the endometrial recovery and the clinical outcome. According to these challenges we created a multi-step study. Endometrium samples were collected from females undergoing assisted reproductive technology (ART) procedure due to couple infertility. These samples were obtained using an endometrium scratching. The hEnMSCs were isolated from endometrium samples and characterized with flow cytometry analysis. Groups of endometrium injured female mice were established by the mechanical injury to uterine horns and the intraperitoneal chemotherapy. The hEnMSCs suspension was injected to some of the studied female mice at approved time intervals. Histological changes of mice uterine horns were evaluated after Masson's trichrome original staining, hematoxylin and eosin (H&E) staining. The fertility assessment of mice was performed by counting formed embryo implantation sites (ISs). The expression of fibrosis related genes (Col1a1, Col3a1, Acta2, and CD44) was evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results showed that endometrium scratching is an effective procedure for mesenchymal stem/stromal cells (MSCs) collection from human endometrium. Isolated hEnMSCs met the criteria for defining MSCs. Moreover, hEnMSCs-based therapy had a demonstrably positive effect on the repair of damaged uterine horns, including a reduction of fibrosis, intensity of inflammatory cells such as lymphocytes and polymorphonuclear cells (PMNs) and the number of apoptotic bodies. The injured mice which recieved hEnMSCs had higher fertility in comparison to the untreated mice. Gene expression was reflected in histology changes and outcomes of conception. In conclusion, hEnMSCs demonstrated a positive impact on endometrium restoration and outcomes of endometrial-factor induced infertility. Further exploration is required in order to continue exploring the multifactorial associations between stem cell therapy, gene expression, endometrial changes and reproductive health, so we can identify individually effective and safe treatment strategies for endometrial-factor induced infertility, which is caused by mechanical effect or chemotherapy, in daily clinical practise.

10.
Mol Cell Biochem ; 359(1-2): 245-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21842375

RESUMO

Aberrant DNA methylation is a critical epigenetic process involved in gene expression of tumor cells. Diverse DNA methyltransferase inhibitors are being studied as potential anticancer drugs, and there is interest in developing novel and more effective DNMTIs. We evaluated zebularine, a stable and low-toxic cytidine analog, effects on human promyelocytic leukemia cell lines, NB4 and KG1. Zebularine caused a dose- and time-dependent NB4 and KG1 cell growth inhibition, did not induce myeloid differentiation but triggered concentration-dependent apoptosis as manifested by procaspase-3 and PAR-1 cleavage and the occurrence of early apoptosis detected by Annexin-V-propidium iodide. Zebularine co-treatment with all-trans retinoic acid (RA) at pharmacological dose (1 µM for NB4 cells) and higher (3 µM for KG1 cells) increased granulocytic differentiation in both cell lines. Pretreatment for 24 or 48 h with zebularine before the treatment with different doses of RA alone or RA with histone deacetylase inhibitors, phenyl butyrate, and BML-210, resulted in significant acceleration and enhancement of differentiation and cell cycle arrest at G0/1. Zebularine alone or in sequential combination with RA decreased expression of DNMT1, caused fast and time-dependent expression of pan-cadherin and partial demethylation of E-cadherin but not tumor suppressor p15. When used in combination with RA, zebularine increased expression of both genes transcript and protein. Zebularine induced regional chromatin remodeling by local histone H4 acetylation and histone H3-K4 methylation in promoter sites of methylated E-cadherin and also in the promoter of unmethylated p21 as evidenced by chromatin immunoprecipitation assay. Our results extend the spectrum of zebularine effects and the evaluation its utility in acute myeloid leukemia therapy based on epigenetics.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citidina/análogos & derivados , Epigênese Genética/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Linhagem Celular Tumoral , Citidina/farmacologia , Citidina/uso terapêutico , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Leucemia Promielocítica Aguda/genética , Tretinoína/farmacologia
11.
Cell Biol Int ; 36(11): 1067-78, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22845560

RESUMO

Epigenetic silencing of cancer-related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML-210 (N-(2-aminophenyl)-N'phenyloctanol diamine), and all-trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 µM caused time-, but not a dose-dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose-dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time-dependent re-expression of methylation-silenced E-cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E-cadherin as a possible therapeutic marker. These processes required both PB-induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E-cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.


Assuntos
Caderinas/metabolismo , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Granulócitos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Propionatos/farmacologia , Anilidas/farmacologia , Biomarcadores/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Relação Dose-Resposta a Droga , Epigênese Genética , Granulócitos/citologia , Granulócitos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Fenilbutiratos/farmacologia , Ftalimidas , Fatores de Tempo , Ativação Transcricional , Tretinoína/farmacologia , Triptofano/análogos & derivados
12.
Mol Biol Rep ; 39(12): 10179-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23007576

RESUMO

Histone deacetylase inhibitors (HDACIs) represent a new class of targeted anti-cancer agents and different other diseases, like muscular disorders. A number of studies have shown that extracellular signal-activated kinases can target chromatin-modifying complexes directly and regulate their function. The molecular connection between the dystrophin-associated protein complex (DAPC) and chromatin has been described, by showing that NO signaling regulates histone deacetylase (HDAC) activity and influences gene expression in different cell types. In present study, we investigated HDACs changes in HeLa cells undergoing growth inhibition and apoptosis, caused by HDACI BML-210 and retinoic acid (ATRA). Cell cycle analysis indicated that HeLa cell treatment with 20 and 30 µM concentration of BML-210 increased the proportion of cells in G0/G1 phase, and caused accumulation in subG1, indicating that the cells are undergoing apoptosis. We determined down-regulation of HDAC 1-5 and 7 after treatment with BML-210. Also, we demonstrated expression of different isoforms of alpha-dystrobrevin (α-DB) and other components of DAPC such as syntrophin, dystrophin, beta-dystrobrevin (ß-DB) and NOS in HeLa cells after treatments. We determined changes in protein expression level of dystrophin, NOS1, α- and ß-DB and in subcellular localization of α-DB after treatments with BML-210 and ATRA. In conclusion, these results suggest that HDACI BML-210 can inhibit cell growth and induce apoptosis in cervical cancer cells, what correlates with down-regulation of HDAC class I and II and changes in the DAPC expression levels. This can be important for identifying target proteins in DAPC signaling to HDACs, as a target of pharmacological intervention for treatment of muscular dystrophies and other diseases.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexo de Proteínas Associadas Distrofina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Distrofina/metabolismo , Complexo de Proteínas Associadas Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Histona Desacetilases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Distrofias Musculares/tratamento farmacológico , Óxido Nítrico Sintase/metabolismo , Transporte Proteico , Tretinoína/farmacologia , Neoplasias do Colo do Útero
13.
Cell Mol Biol Lett ; 17(4): 501-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22820861

RESUMO

DNMT inhibitors are promising new drugs for cancer therapies. In this study, we have observed the antileukemic action of two diverse DNMT inhibitors, the nucleoside agent zebularine and the non-nucleoside agent RG108, in human promyelocytic leukemia (PML) HL-60 cells. Zebularine but not RG108 caused dose- and time-dependent cell growth inhibition and induction of apoptosis. However, co-treatment with either drug at a non-toxic dose and all trans retinoic acid (RA) reinforced differentiation to granulocytes, while 24 or 48 h-pretreatment with zebularine or RG108 followed by RA alone or in the presence of HDAC inhibitors (sodium phenyl butyrate or BML-210) significantly accelerated and enhanced cell maturation to granulocytes. This occurs in parallel with the expression of a surface biomarker, CD11b, and early changes in histone H4 acetylation and histone H3K4me3 methylation. The application of both drugs to HL-60 cells in continuous or sequential fashion decreased DNMT1 expression, and induced E-cadherin promoter demethylation and reactivation at both the mRNA and the protein levels in association with the induction of granulocytic differentiation. The results confirmed the utility of zebularine and RG108 in combinations with RA and HDAC inhibitors to reinforce differentiation effects in promyelocytic leukemia.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citidina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Propionatos/farmacologia , Acetilação , Antígeno CD11b/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Ilhas de CpG , Citidina/química , Citidina/farmacologia , Inibidores Enzimáticos/química , Epigênese Genética , Células HL-60 , Inibidores de Histona Desacetilases/química , Histonas/metabolismo , Humanos , Indóis/química , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Metilação , Ftalimidas , Regiões Promotoras Genéticas , Propionatos/química , Tretinoína/química , Tretinoína/farmacologia , Triptofano/análogos & derivados
14.
Cancers (Basel) ; 14(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35681732

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease. A significant proportion of AML patients is refractory to clinical treatment or relapses. Our aim is to determine new potential AML clinical treatment prognosis markers. We investigated various cell fate and epigenetic regulation important gene level differences between refractory and responsive AML patient groups at diagnosis stage and after clinical treatment using RT-qPCR. We demonstrated that oncogenic MYC and WT1 and metabolic IDH1 gene expression was significantly higher and cell cycle inhibitor CDKN1A (p21) gene expression was significantly lower in refractory patients' bone marrow cells compared to treatment responsive patients both at diagnosis and after clinical treatment. Moreover, we determined that, compared to clinical treatment responsive patients, refractory patients possess a significantly higher gene expression of histone deacetylase 2 (HDAC2) and epigenetic DNA modulator TET1 and a significantly lower gene expression of lysine acetyltransferase 6A (KAT6A) and nucleosome remodeling and deacetylase (NuRD) complex component GATAD2A. We suggest that MYC, WT1, IDH1, CDKN1A, HDAC2, TET1, KAT6A and GATAD2A gene expression changes might characterize refractory AML. Thus, they might be useful for AML prognosis. Additionally, we suggest that epigenetic modulation might be beneficial in combination with standard treatment.

15.
Front Genet ; 13: 821676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495123

RESUMO

Acute myeloid leukemia (AML) is an aggressive, heterogeneous group of malignancies with different clinical behaviors and different responses to therapy. For many types of cancer, finding cancer early makes it easier to treat. Identifying prognostic molecular markers and understanding their biology are the first steps toward developing novel diagnostic tools or therapies for patients with AML. In this study, we defined proteins and genes that can be used in the prognosis of different acute leukemia cases and found possible uses in diagnostics and therapy. We analyzed newly diagnosed acute leukemia cases positive for t (15; 17) (q22; q21) PML-RAR alpha, acute promyelocytic leukemia (APL). The samples of bone marrow cells were collected from patients at the diagnosis stage, as follow-up samples during standard treatment with all-trans retinoic acid, idarubicin, and mitoxantrone, and at the molecular remission. We determined changes in the expression of genes involved in leukemia cell growth, apoptosis, and differentiation. We observed that WT1, CALR, CAV1, and MYC genes' expression in all APL patients with no relapse history was downregulated after treatment and could be potential markers associated with the pathology, thereby revealing the potential value of this approach for a better characterization of the prediction of APL outcomes.

16.
Front Bioeng Biotechnol ; 10: 961987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263355

RESUMO

Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.

17.
Front Bioeng Biotechnol ; 9: 623886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692988

RESUMO

Human amniotic fluid stem cells (AFSC) are an exciting and very promising source of stem cells for therapeutic applications. In this study we investigated the effects of short-term treatments of small molecules to improve stem cell properties and differentiation capability. For this purpose, we used epigenetically active compounds, such as histone deacetylase inhibitors Trichostatin A (TSA) and sodium butyrate (NaBut), as well as multifunctional molecules of natural origin, such as retinoic acid (RA) and vitamin C (vitC). We observed that combinations of these compounds triggered upregulation of genes involved in pluripotency (KLF4, OCT4, NOTCH1, SOX2, NANOG, LIN28a, CMYC), but expression changes of these proteins were mild with only significant downregulation of Notch1. Also, some alterations in cell surface marker expression was established by flow cytometry with the most explicit changes in the expression of CD105 and CD117. Analysis of cellular energetics performed using Seahorse analyzer and assessment of gene expression related to cell metabolism and respiration (NRF1, HIF1α, PPARGC1A, ERRα, PKM, PDK1, LDHA, NFKB1, NFKB2, RELA, RELB, REL) revealed that small molecule treatments stimulate AFSCs toward a more energetically active phenotype. To induce cells to differentiate toward neurogenic lineage several different protocols including commercial supplements N2 and B27 together with RA were used and compared to the same differentiation protocols with the addition of a pre-induction step consisting of a combination of small molecules (vitC, TSA and RA). During differentiation the expression of several neural marker genes was analyzed (Nestin, MAP2, TUBB3, ALDH1L1, GFAP, CACNA1D, KCNJ12, KCNJ2, KCNH2) and the beneficial effect of small molecule treatment on differentiation potential was observed with upregulated gene expression. Differentiation was also confirmed by staining TUBB3, NCAM1, and Vimentin and assessed by secretion of BDNF. The results of this study provide valuable insights for the potential use of short-term small molecule treatments to improve stem cell characteristics and boost differentiation potential of AFSCs.

18.
Biochem Biophys Res Commun ; 397(2): 192-6, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20519146

RESUMO

Alpha-actinin 4 (ACTN4) is an actin-binding protein. In the cytoplasm, ACTN4 participates in structural organisation of the cytoskeleton via cross-linking of actin filaments. Nuclear localisation of ACTN4 has also been reported, but no clear role in the nucleus has been established. In this report, we describe the identification of proteins associated with ACTN4 in the nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and MALDI-TOF mass-spectrometry revealed a large number of ACTN4-bound proteins that are involved in various aspects of mRNA processing and transport. The association of ACTN4 with different ribonucleoproteins suggests that a major function of nuclear ACTN4 may be regulation of mRNA metabolism and signaling.


Assuntos
Actinina/metabolismo , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Front Bioeng Biotechnol ; 8: 610544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392174

RESUMO

Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa