Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 144(4): 2213, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404511

RESUMO

Mammals use binaural or monaural (spectral) cues to localize acoustic sources. While the sensitivity of terrestrial mammals to changes in source elevation is relatively poor, the accuracy achieved by the odontocete cetaceans' biosonar is high, independently of where the source is. Binaural/spectral cues are unlikely to account for this remarkable skill. In this paper, bone-conducted sound in a dolphin's mandible is studied, investigating its possible contribution to sound localization. Experiments are conducted in a water tank by deploying, on the horizontal and median planes of the skull, ultrasound sources that emit synthetic clicks between 45 and 55 kHz. Elastic waves propagating through the mandible are measured at the pan bones and used to localize source positions via either binaural cues or a correlation-based full-waveform algorithm. Exploiting the full waveforms and, most importantly, reverberated coda, it is possible to enhance the accuracy of source localization in the vertical plane and achieve similar resolution of horizontal- vs vertical-plane sources. The results noted in this paper need to be substantiated by further experimental work, accounting for soft tissues and making sure that the data are correctly mediated to the internal ear. If confirmed, the results would favor the idea that dolphin's echolocation skills rely on the capability to analyze the coda of biosonar echoes.


Assuntos
Golfinhos Comuns/fisiologia , Ecolocação , Mandíbula/fisiologia , Animais , Som , Localização de Som
2.
J Acoust Soc Am ; 141(3): 2143, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28372076

RESUMO

Auditory display can complement visual representations in order to better interpret scientific data. A previous article showed that the free categorization of "audified seismic signals" operated by listeners can be explained by various geophysical parameters. The present article confirms this result and shows that cognitive representations of listeners can be used as heuristics for the characterization of seismic signals. Free sorting tests are conducted with audified seismic signals, with the earthquake/seismometer relative location, playback audification speed, and earthquake magnitude as controlled variables. The analysis is built on partitions (categories) and verbal comments (categorization criteria). Participants from different backgrounds (acousticians or geoscientists) are contrasted in order to investigate the role of the participants' expertise. Sounds resulting from different earthquake/station distances or azimuths, crustal structure and topography along the path of the seismic wave, earthquake magnitude, are found to (a) be sorted into different categories, (b) elicit different verbal descriptions mainly focused on the perceived number of events, frequency content, and background noise level. Building on these perceptual results, acoustic descriptors are computed and geophysical interpretations are proposed in order to match the verbal descriptions. Another result is the robustness of the categories with respect to the audification speed factor.

3.
J Acoust Soc Am ; 135(3): 1034-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606247

RESUMO

Cross-correlations of ambient noise averaged at two receivers lead to the reconstruction of the two-point Green's function, provided that the wave-field is uniform azimuthally, and also temporally and spatially uncorrelated. This condition depends on the spatial distribution of the sources and the presence of heterogeneities that act as uncorrelated secondary sources. This study aims to evaluate the relative contributions of source distribution and medium complexity in the two-point cross-correlations by means of numerical simulations and laboratory experiments in a finite-size reverberant two-dimensional (2D) plate. The experiments show that the fit between the cross-correlation and the 2D Green's function depends strongly on the nature of the source used to excite the plate. A turbulent air-jet produces a spatially uncorrelated acoustic field that rapidly builds up the Green's function. On the other hand, extracting the Green's function from cross-correlations of point-like sources requires more realizations and long recordings to balance the effect of the most energetic first arrivals. When the Green's function involves other arrivals than the direct wave, numerical simulations confirm the better Green's function reconstruction with a spatially uniform source distribution than the typical contour-like source distribution surrounding the receivers that systematically gives rise to spurious phases.


Assuntos
Acústica , Processamento de Sinais Assistido por Computador , Som , Simulação por Computador , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Pressão , Espectrografia do Som , Fatores de Tempo , Vibração
4.
Water Air Soil Pollut ; 233(6): 221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694639

RESUMO

We illustrate the implementation and results of a field experiment, consisting of recording continuous signal from a hydrophone 3 m deep in the Venetian lagoon. We simultaneously recorded audio signal through a microphone placed on a nearby pier. We investigate the potential of this simple instrumental setup to explore the small touristic boat traffic contribution to the underwater noise. The ultimate goal of our work is to contribute to quantifying underwater noise pollution due to motorboat passages and its impact on the ecosystem. Efforts such as ours should help to identify measures that could diminish noise pollution, focusing specifically on the aspects that are most disruptive to underwater life. After this preliminary test, more work can be planned, involving the deployment of a larger network of similar instruments around the lagoon. At this point, we can conclude that (i) our instruments are sensitive enough to detect motorboats and identify some of their characteristics; (ii) the area of interest is characterized by a large (approx. 20 dB) day/night difference in ambient noise; and (iii) the historic center of Venice and its immediate surroundings are particularly noisy, in comparison to other similarly studied locations.

5.
Sci Rep ; 11(1): 10149, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980915

RESUMO

Mapping variations in the attenuation of seismic energy is important for understanding dissipative mechanisms in the lithosphere, and for modeling ground shaking associated with earthquakes. We cross-correlate ambient seismic signal recorded across the EarthScope Transportable Array in the 3-15 s period range. We apply to the resulting cross correlations a new method to estimate lateral variations in Rayleigh-wave attenuation, as a function of period, beneath North America. Between 3 and 6 s, our maps are dominated by a strong eastward decrease in attenuation. This pattern vanishes at longer periods, confirming early observations based on regional earthquakes. Attenuation maps and phase-velocity maps are anti-correlated at periods between 3 and 6 s, but the anti-correlation is also largely lost at longer periods. This corresponds to the attenuation coefficient decreasing with period more rapidly in the west than in the east, while the change in phase velocity with period is more uniform across the continent. Our results point to a transition in the properties of upper-crustal materials with depth, probably related to the closure of fluid-filled cracks and pores, and imply that measures of attenuation from seismic noise carry significant information on crustal rheology.

6.
Sci Rep ; 10(1): 9404, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523080

RESUMO

In March/April 2020 the Italian government drastically reduced vehicle traffic and interrupted all non-essential industrial activities over the entire national territory. Italy thus became the first country in the world, with the exception of Hubei, to enact lockdown measures as a consequence of the COVID-19 outbreak and the need to contain it. Italy is also a seismically active area, and as such is monitored by a dense permanent network of seismic stations. We analyse continuous seismic data from many stations in northern and central Italy, and quantify the impact of the lockdown on seismic ambient noise, as a function of time and location. We find that the lockdown reduces ambient noise significantly in the 1-10 Hz frequency range; because natural sources of seismic noise are not affected by the lockdown, the seismic signature of anthropic noise can be characterised with unprecedented clarity, by simply comparing the signal recorded before and after the lockdown. Our results correlate well with independent evaluations of the impact of the lockdown (e.g., cell phone displacements), and we submit that ambient-noise seismology is a useful tool to monitor containment measures such as the coronavirus lockdowns.

7.
Phys Rev E ; 96(3-1): 032137, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346881

RESUMO

This study contributes to the evaluation of the robustness and accuracy of Green's function reconstruction from cross-correlation of strongly dispersed reverberated signals, with disentangling of the respective roles of ballistic and reverberated ("coda") contributions. We conduct a suite of experiments on a highly reverberating thin duralumin plate, where an approximately diffuse flexural wave field is generated by taking advantage of the plate reverberation and wave dispersion. A large number of impulsive sources that cover the whole surface of the plate are used to validate ambient-noise theory through comparison of the causal and anticausal (i.e., positive- and negative-time) terms of the cross-correlation to one another and to the directly measured Green's function. To quantify the contribution of the ballistic and coda signals, the cross-correlation integral is defined over different time windows of variable length, and the accuracy of the reconstructed Green's function is studied as a function of the initial and end times of the integral. We show that even cross-correlations measured over limited time windows converge to a significant part of the Green's function. Convergence is achieved over a wide time window, which includes not only direct flexural-wave arrivals, but also the multiply reverberated coda. We propose a model, based on normal-mode analysis, that relates the similarity between the cross-correlation and the Green's function to the statistical properties of the plate. We also determine quantitatively how incoherent noise degrades the estimation of the Green's function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa