Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(6): 1282-1291.e8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792174

RESUMO

Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Fosforilases/metabolismo , Sistemas Toxina-Antitoxina , Tuberculose/microbiologia , Animais , Antibióticos Antituberculose/farmacologia , Antitoxinas/química , Antitoxinas/genética , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Viabilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Fosforilases/química , Fosforilases/genética , Conformação Proteica , Sistemas Toxina-Antitoxina/genética , Tuberculose/tratamento farmacológico
2.
PLoS Pathog ; 17(3): e1009410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720986

RESUMO

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/microbiologia , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose/microbiologia , Tropismo Viral/fisiologia , Animais , Bovinos , Células Gigantes , Humanos
3.
Mol Microbiol ; 114(4): 641-652, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634279

RESUMO

Of the ~80 putative toxin-antitoxin (TA) modules encoded by the bacterial pathogen Mycobacterium tuberculosis (Mtb), three contain antitoxins essential for bacterial viability. One of these, Rv0060 (DNA ADP-ribosyl glycohydrolase, DarGMtb ), functions along with its cognate toxin Rv0059 (DNA ADP-ribosyl transferase, DarTMtb ), to mediate reversible DNA ADP-ribosylation (Jankevicius et al., 2016). We demonstrate that DarTMtb -DarGMtb form a functional TA pair and essentiality of darGMtb is dependent on the presence of darTMtb , but simultaneous deletion of both darTMtb -darGMtb does not alter viability of Mtb in vitro or in mice. The antitoxin, DarGMtb , forms a cytosolic complex with DNA-repair proteins that assembles independently of either DarTMtb or interaction with DNA. Depletion of DarGMtb alone is bactericidal, a phenotype that is rescued by expression of an orthologous antitoxin, DarGTaq , from Thermus aquaticus. Partial depletion of DarGMtb triggers a DNA-damage response and sensitizes Mtb to drugs targeting DNA metabolism and respiration. Induction of the DNA-damage response is essential for Mtb to survive partial DarGMtb -depletion and leads to a hypermutable phenotype.


Assuntos
Mycobacterium tuberculosis/metabolismo , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/fisiologia , Animais , Antitoxinas/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Morte Celular , DNA/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana
4.
ACS Infect Dis ; 10(1): 170-183, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085851

RESUMO

Treatment of Mycobacterium tuberculosis and Mycobacterium avium infections requires multiple drugs for long time periods. Mycobacterium protein-tyrosine-phosphatase B (MptpB) is a key M. tuberculosis virulence factor that subverts host antimicrobial activity to promote intracellular survival. Inhibition of MptpB reduces the infection burden in vivo and offers new opportunities to improve current treatments. Here, we demonstrate that M. avium produces an MptpB orthologue and that the MptpB inhibitor C13 reduces the M. avium infection burden in macrophages. Combining C13 with the antibiotics rifampicin or bedaquiline showed an additive effect, reducing intracellular infection of both M. tuberculosis and M. avium by 50%, compared to monotreatment with antibiotics alone. This additive effect was not observed with pretomanid. Combining C13 with the minor groove-binding compounds S-MGB-362 and S-MGB-363 also reduced the M. tuberculosis intracellular burden. Similar additive effects of C13 and antibiotics were confirmed in vivo using Galleria mellonella infections. We demonstrate that the reduced mycobacterial burden in macrophages observed with C13 treatments is due to the increased trafficking to lysosomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Proteínas Tirosina Fosfatases , Micobactérias não Tuberculosas
5.
Nat Commun ; 15(1): 4161, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755122

RESUMO

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Assuntos
Proteínas de Bactérias , Biotina , Mycobacterium tuberculosis , Biotina/metabolismo , Biotina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sulfurtransferases/metabolismo , Sulfurtransferases/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimologia , Escherichia coli/metabolismo , Escherichia coli/genética
6.
FEBS Open Bio ; 13(7): 1204-1217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36520007

RESUMO

Intracellular pathogens such as Mycobacterium tuberculosis (Mtb) have evolved diverse strategies to counteract macrophage defence mechanisms including phagolysosomal biogenesis. Within macrophages, Mtb initially resides inside membrane-bound phagosomes that interact with lysosomes and become acidified. The ability of Mtb to control and subvert the fusion between phagosomes and lysosomes plays a key role in the pathogenesis of tuberculosis. Therefore, understanding how pathogens interact with the endolysosomal network and cope with intracellular acidification is important to better understand the disease. Here, we describe in detail the use of fluorescence microscopy-based approaches to investigate Mtb responses to acidic environments in cellulo. We report high-content imaging modalities to probe Mtb sensing of external pH or visualise in real-time Mtb intrabacterial pH within infected human macrophages. We discuss various methodologies with step-by-step analyses that enable robust image-based quantifications. Finally, we highlight the advantages and limitations of these different approaches and discuss potential alternatives that can be applied to further investigate Mtb-host cell interactions. These methods can be adapted to study host-pathogen interactions in different biological systems and experimental settings. Altogether, these approaches represent a valuable tool to further broaden our understanding of the cellular and molecular mechanisms underlying intracellular pathogen survival.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos , Tuberculose/microbiologia , Fagossomos/microbiologia
7.
Nat Microbiol ; 8(5): 803-818, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959508

RESUMO

Autophagy is a cellular innate-immune defence mechanism against intracellular microorganisms, including Mycobacterium tuberculosis (Mtb). How canonical and non-canonical autophagy function to control Mtb infection in phagosomes and the cytosol remains unresolved. Macrophages are the main host cell in humans for Mtb. Here we studied the contributions of canonical and non-canonical autophagy in the genetically tractable human induced pluripotent stem cell-derived macrophages (iPSDM), using a set of Mtb mutants generated in the same genetic background of the common lab strain H37Rv. We monitored replication of Mtb mutants that are either unable to trigger canonical autophagy (Mtb ΔesxBA) or reportedly unable to block non-canonical autophagy (Mtb ΔcpsA) in iPSDM lacking either ATG7 or ATG14 using single-cell high-content imaging. We report that deletion of ATG7 by CRISPR-Cas9 in iPSDM resulted in increased replication of wild-type Mtb but not of Mtb ΔesxBA or Mtb ΔcpsA. We show that deletion of ATG14 resulted in increased replication of both Mtb wild type and the mutant Mtb ΔesxBA. Using Mtb reporters and quantitative imaging, we identified a role for ATG14 in regulating fusion of phagosomes containing Mtb with lysosomes, thereby enabling intracellular bacteria restriction. We conclude that ATG7 and ATG14 are both required for restricting Mtb replication in human macrophages.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Citosol , Macrófagos , Fagossomos/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
8.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737955

RESUMO

Peroxisomes are organelles involved in many metabolic processes including lipid metabolism, reactive oxygen species (ROS) turnover, and antimicrobial immune responses. However, the cellular mechanisms by which peroxisomes contribute to bacterial elimination in macrophages remain elusive. Here, we investigated peroxisome function in iPSC-derived human macrophages (iPSDM) during infection with Mycobacterium tuberculosis (Mtb). We discovered that Mtb-triggered peroxisome biogenesis requires the ESX-1 type 7 secretion system, critical for cytosolic access. iPSDM lacking peroxisomes were permissive to Mtb wild-type (WT) replication but were able to restrict an Mtb mutant missing functional ESX-1, suggesting a role for peroxisomes in the control of cytosolic but not phagosomal Mtb. Using genetically encoded localization-dependent ROS probes, we found peroxisomes increased ROS levels during Mtb WT infection. Thus, human macrophages respond to the infection by increasing peroxisomes that generate ROS primarily to restrict cytosolic Mtb. Our data uncover a peroxisome-controlled, ROS-mediated mechanism that contributes to the restriction of cytosolic bacteria.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Peroxissomos , Espécies Reativas de Oxigênio , Humanos , Citosol , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Secreção Tipo VII
9.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36757797

RESUMO

Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Terpenos , Nucleosídeos , Macrófagos/microbiologia , Lipídeos , Lisossomos
10.
mBio ; 13(2): e0011722, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323041

RESUMO

Mycobacterium tuberculosis segregates within multiple subcellular niches with different biochemical and biophysical properties that, upon treatment, may impact antibiotic distribution, accumulation, and efficacy. However, it remains unclear whether fluctuating intracellular microenvironments alter mycobacterial homeostasis and contribute to antibiotic enrichment and efficacy. Here, we describe a live dual-imaging approach to monitor host subcellular acidification and M. tuberculosis intrabacterial pH. By combining this approach with pharmacological and genetic perturbations, we show that M. tuberculosis can maintain its intracellular pH independently of the surrounding pH in human macrophages. Importantly, unlike bedaquiline (BDQ), isoniazid (INH), or rifampicin (RIF), the drug pyrazinamide (PZA) displays antibacterial efficacy by disrupting M. tuberculosis intrabacterial pH homeostasis in cellulo. By using M. tuberculosis mutants, we confirmed that intracellular acidification is a prerequisite for PZA efficacy in cellulo. We anticipate this imaging approach will be useful to identify host cellular environments that affect antibiotic efficacy against intracellular pathogens. IMPORTANCE We still do not completely understand why tuberculosis (TB) treatment requires the combination of several antibiotics for up to 6 months. M. tuberculosis is a facultative intracellular pathogen, and it is still unknown whether heterogenous and dynamic intracellular populations of bacteria in different cellular environments affect antibiotic efficacy. By developing a dual live imaging approach to monitor mycobacterial pH homeostasis, host cell environment, and antibiotic action, we show here that intracellular localization of M. tuberculosis affects the efficacy of one first-line anti-TB drug. Our observations can be applicable to the treatment of other intracellular pathogens and help to inform the development of more effective combined therapies for tuberculosis that target heterogenous bacterial populations within the host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Fagossomos/microbiologia , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
11.
J Bacteriol ; 191(8): 2899-901, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19233926

RESUMO

Genome sequence information suggests that B(12)-dependent mutases are present in a number of bacteria, including members of the suborder Corynebacterineae like Mycobacterium tuberculosis and Corynebacterium glutamicum. We here functionally identify a methylmalonyl coenzyme A (CoA) mutase in C. glutamicum that is retained in all of the members of the suborder Corynebacterineae and is encoded by NCgl1471, NCgl1472, and NCgl1470. In addition, we observe the presence of methylmalonate in C. glutamicum, reaching concentrations of up to 757 nmol g (dry weight)(-1) in propionate-grown cells, whereas in Escherichia coli no methylmalonate was detectable. As demonstrated with a mutase deletion mutant, the presence of methylmalonate in C. glutamicum is independent of mutase activity but possibly due to propionyl-CoA carboxylase activity. During growth on propionate, increased mutase activity has severe cellular consequences, resulting in growth arrest and excretion of succinate. The physiological context of the mutase present in members of the suborder Corynebacterineae is discussed.


Assuntos
Acil Coenzima A/metabolismo , Corynebacterium glutamicum/enzimologia , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Escherichia coli/química , Deleção de Genes , Ácido Metilmalônico/análise , Metilmalonil-CoA Descarboxilase/metabolismo , Propionatos/metabolismo , Ácido Succínico/metabolismo
12.
Nat Commun ; 8: 14731, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28348398

RESUMO

Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3' ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase.


Assuntos
Viabilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fator Rho/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Inativação Gênica , Genoma Bacteriano , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ligação Proteica , RNA Antissenso/genética , Fator Rho/química , Fator Rho/genética , Transcriptoma/genética , Tuberculose/microbiologia , Tuberculose/patologia
13.
J Immunol ; 178(5): 3161-9, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17312164

RESUMO

Tuberculous granulomas are the sites of interaction between the host response and the tubercle bacilli within infected individuals. They mainly consist of organized aggregations of lymphocytes and macrophages (Mf). A predominant role of mycobacterial envelope glycolipids in granulomas formation has been recently emphasized, yet the signaling events interfering with granuloma cell differentiation remain elusive. To decipher this molecular machinery, we have recently developed an in vitro human model of mycobacterial granulomas. In this study, we provide evidence that the mycobacterial proinflammatory phosphatidyl-myo-inositol mannosides and lipomannans (LM), as well as the anti-inflammatory lipoarabinomannan induce granuloma formation, yet only the proinflammatory glycolipids induce the fusion of granuloma Mf into multinucleated giant cells (MGC). We also demonstrate that LM induces large MGC resembling those found in vivo within the granulomas of tuberculosis patients, and that this process is mediated by TLR2 and is dependent on the beta(1) integrin/ADAM9 cell fusion machinery. Our results demonstrate for the first time that the Mf differentiation stage specifically occurring within granulomatous structures (i.e., MGC formation) is triggered by mycobacterial envelope glycolipids, which are capable of inducing the cell fusion machinery. This provides the first characterization of the ontogeny of human granuloma MGC, thus resulting in a direct modulation by a particular mycobacterial envelope glycolipid of the differentiation process of granuloma Mf.


Assuntos
Proteínas ADAM/imunologia , Granuloma/imunologia , Integrina beta1/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Mycobacterium/imunologia , Receptor 2 Toll-Like/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/imunologia , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Células Cultivadas , Células Gigantes/ultraestrutura , Granuloma/induzido quimicamente , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Macrófagos/ultraestrutura , Mycobacterium/química
14.
Proc Natl Acad Sci U S A ; 103(22): 8511-6, 2006 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-16709676

RESUMO

Mycobacterium tuberculosis contains >20 enzymes that require activation by transfer of the 4'-phosphopantetheine moiety of CoA onto a conserved serine residue, a posttranslational modification catalyzed by 4'-phosphopantetheinyl transferases (PPTases). The modified proteins are involved in key metabolic processes such as cell envelope biogenesis and the production of virulence factors. We show that two PPTases conserved in all Mycobacterium spp. and in related genera activate two different subsets of proteins and are not functionally redundant. One enzyme, AcpS, activates the two fatty acid synthase systems of mycobacteria, whereas the other PPTase, PptT, acts on type-I polyketide synthases and nonribosomal peptide synthases, both of which are involved in the biosynthesis of virulence factors. We demonstrate that both PPTases are essential for Mycobacterium smegmatis viability and that PptT is required for the survival of Mycobacterium bovis bacillus Calmette-Guérin. These enzymes are thus central to the biology of mycobacteria and for mycobacterial pathogenesis and represent promising targets for new antituberculosis drugs.


Assuntos
Proteínas de Bactérias/metabolismo , Viabilidade Microbiana , Mycobacterium/enzimologia , Mycobacterium/crescimento & desenvolvimento , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas de Bactérias/genética , Catálise , Contagem de Colônia Microbiana , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Graxos/biossíntese , Estrutura Molecular , Mycobacterium/genética , Fenótipo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa