Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 555(7698): 657-661, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562238

RESUMO

Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.


Assuntos
Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Movimento , Dispositivos Eletrônicos Vestíveis , Adulto , Ingestão de Líquidos/fisiologia , Feminino , Cabeça/fisiologia , Humanos , Campos Magnéticos , Esportes/fisiologia
2.
Neuroimage ; 271: 120024, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918138

RESUMO

Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Criança , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Campos Magnéticos , Razão Sinal-Ruído
3.
Neuroimage ; 274: 120157, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149237

RESUMO

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Humanos , Magnetoencefalografia/métodos , Movimento , Campos Magnéticos , Fenômenos Eletromagnéticos , Encéfalo/fisiologia
4.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420622

RESUMO

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Humanos , Magnetoencefalografia/métodos , Neuroimagem Funcional , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
5.
Neuroimage ; 252: 119027, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217205

RESUMO

Optically-pumped magnetometers (OPMs) are an established alternative to superconducting sensors for magnetoencephalography (MEG), offering significant advantages including flexibility to accommodate any head size, uniform coverage, free movement during scanning, better data quality and lower cost. However, OPM sensor technology remains under development; there is flexibility regarding OPM design and it is not yet clear which variant will prove most effective for MEG. Most OPM-MEG implementations have either used single-axis (equivalent to conventional MEG) or dual-axis magnetic field measurements. Here we demonstrate use of a triaxial OPM formulation, able to characterise the full 3D neuromagnetic field vector. We show that this novel sensor is able to characterise magnetic fields with high accuracy and sensitivity that matches conventional (dual-axis) OPMs. We show practicality via measurement of biomagnetic fields from both the heart and the brain. Using simulations, we demonstrate how triaxial measurement offers improved cortical coverage, especially in infants. Finally, we introduce a new 3D-printed child-friendly OPM-helmet and demonstrate feasibility of triaxial measurement in a five-year-old. In sum, the data presented demonstrate that triaxial OPMs offer a significant improvement over dual-axis variants and are likely to become the sensor of choice for future MEG systems, particularly for deployment in paediatric populations.


Assuntos
Magnetoencefalografia , Magnetometria , Encéfalo , Pré-Escolar , Desenho de Equipamento , Estudos de Viabilidade , Humanos
6.
Neuroimage ; 253: 119084, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278706

RESUMO

Magnetoencephalography (MEG) has been revolutionised by optically pumped magnetometers (OPMs). "OPM-MEG" offers higher sensitivity, better spatial resolution, and lower cost than conventional instrumentation based on superconducting quantum interference devices (SQUIDs). Moreover, because OPMs are small, lightweight, and portable they offer the possibility of lifespan compliance and (with control of background field) motion robustness, dramatically expanding the range of MEG applications. However, OPM-MEG remains nascent technology; it places stringent requirements on magnetic shielding, and whilst a number of viable systems exist, most are custom made and there have been no cross-site investigations showing the reliability of data. In this paper, we undertake the first cross-site OPM-MEG comparison, using near identical commercial systems scanning the same participant. The two sites are deliberately contrasting, with different magnetic environments: a "green field" campus university site with an OPM-optimised shielded room (low interference) and a city centre hospital site with a "standard" (non-optimised) MSR (higher interference). We show that despite a 20-fold difference in background field, and a 30-fold difference in low frequency interference, using dynamic field control and software-based suppression of interference we can generate comparable noise floors at both sites. In human data recorded during a visuo-motor task and a face processing paradigm, we were able to generate similar data, with source localisation showing that brain regions could be pinpointed with just ∼10 mm spatial discrepancy and temporal correlations of > 80%. Overall, our study demonstrates that, with appropriate field control, OPM-MEG systems can be sited even in city centre hospital locations. The methods presented pave the way for wider deployment of OPM-MEG.


Assuntos
Encéfalo , Magnetoencefalografia , Desenho de Equipamento , Humanos , Fenômenos Magnéticos , Magnetoencefalografia/métodos , Reprodutibilidade dos Testes
7.
BMC Biol ; 19(1): 158, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376215

RESUMO

BACKGROUND: Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-quality brain signals should be captured non-invasively. Magnetoencephalography (MEG) is a potent candidate but currently requires costly and confining recording hardware. The recently developed optically pumped magnetometers (OPMs) promise to overcome this limitation, but are currently untested in the context of neural interfacing. RESULTS: In this work, we show that OPM-MEG allows robust single-trial analysis which we exploited in a real-time 'mind-spelling' application yielding an average accuracy of 97.7%. CONCLUSIONS: This shows that OPM-MEG can be used to exploit neuro-magnetic brain responses in a practical and flexible manner, and opens up new avenues for a wide range of new neural interface applications in the future.


Assuntos
Encéfalo , Magnetoencefalografia , Eletroencefalografia , Humanos
8.
Neuroimage ; 236: 118025, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838266

RESUMO

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operate without cryogenics. This has led to a step change in instrumentation for magnetoencephalography (MEG), enabling a "wearable" scanner platform, adaptable to fit any head size, able to acquire data whilst subjects move, and offering improved data quality. Although many studies have shown the efficacy of 'OPM-MEG', one relatively untapped advantage relates to improved array design. Specifically, OPMs enable the simultaneous measurement of magnetic field components along multiple axes (distinct from a single radial orientation, as used in most conventional MEG systems). This enables characterisation of the magnetic field vector at all sensors, affording extra information which has the potential to improve source reconstruction. Here, we conduct a theoretical analysis of the critical parameters that should be optimised for effective source reconstruction. We show that these parameters can be optimised by judicious array design incorporating triaxial MEG measurements. Using simulations, we demonstrate how a triaxial array offers a dramatic improvement on our ability to differentiate real brain activity from sources of magnetic interference (external to the brain). Further, a triaxial system is shown to offer a marked improvement in the elimination of artefact caused by head movement. Theoretical results are supplemented by an experimental recording demonstrating improved interference reduction. These findings offer new insights into how future OPM-MEG arrays can be designed with improved performance.


Assuntos
Córtex Cerebral/fisiologia , Fenômenos Magnéticos , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Modelos Teóricos , Adulto , Artefatos , Simulação por Computador , Desenho de Equipamento , Humanos , Campos Magnéticos , Masculino
9.
Neuroimage ; 233: 117969, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744453

RESUMO

During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g., language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Magnetoencefalografia/métodos , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
10.
Neuroimage ; 230: 117815, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524584

RESUMO

Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Magnetometria/métodos , Desempenho Psicomotor/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Feminino , Humanos , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Masculino , Adulto Jovem
11.
Neuroimage ; 241: 118401, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273527

RESUMO

Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices - SQUIDs) for magnetoencephalography (MEG). With the promise of a wearable system that offers lifespan compliance, enables movement during scanning, and provides higher quality data, OPMs could drive a step change in MEG instrumentation. However, this potential can only be realised if background magnetic fields are appropriately controlled, via a combination of optimised passive magnetic screening (i.e. enclosing the system in layers of high-permeability materials), and electromagnetic coils to further null the remnant magnetic field. In this work, we show that even in an OPM-optimised passive shield with extremely low (<2 nT) remnant magnetic field, head movement generates significant artefacts in MEG data that manifest as low-frequency interference. To counter this effect we introduce a magnetic field mapping technique, in which the participant moves their head to sample the background magnetic field using a wearable sensor array; resulting data are compared to a model to derive coefficients representing three uniform magnetic field components and five magnetic field gradient components inside the passive shield. We show that this technique accurately reconstructs the magnitude of known magnetic fields. Moreover, by feeding the obtained coefficients into a bi-planar electromagnetic coil system, we were able to reduce the uniform magnetic field experienced by the array from a magnitude of 1.3±0.3 nT to 0.29±0.07 nT. Most importantly, we show that this field compensation generates a five-fold reduction in motion artefact at 0‒2 Hz, in a visual steady-state evoked response experiment using 6 Hz stimulation. We suggest that this technique could be used in future OPM-MEG experiments to improve the quality of data, especially in paradigms seeking to measure low-frequency oscillations, or in experiments where head movement is encouraged.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Movimentos da Cabeça/fisiologia , Campos Magnéticos , Magnetoencefalografia/métodos , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Dispositivos de Proteção da Cabeça , Humanos , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Magnetometria/métodos
12.
Neuroimage ; 225: 117443, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059052

RESUMO

Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth. We found that simulated hippocampal sources gave rise to dipolar field patterns with one scalp surface field extremum at the temporal lobe and a corresponding maximum or minimum at the roof of the mouth. We then constructed a fitted dental mould to accommodate an Optically Pumped Magnetometer (OPM). We collected data using a previously validated hippocampal-dependant task to test the empirical utility of a mouth-based sensor, with an accompanying array of left and right temporal lobe OPMs. We found that the mouth sensor showed the greatest task-related theta power change. We found that this sensor had a mild effect on the reconstructed power in the hippocampus (~10% change) but that coherence images between the mouth sensor and reconstructed source images showed a global maximum in the right hippocampus. We conclude that augmenting a scalp-based MEG array with sensors in the mouth shows unique promise for both basic scientists and clinicians interested in interrogating the hippocampus.


Assuntos
Hipocampo/diagnóstico por imagem , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Neuroimagem Funcional , Hipocampo/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Boca , Palato Duro
13.
Neuroimage ; 219: 116995, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32480036

RESUMO

Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extracranial magnetic fields generated by synchronised current in neuronal assemblies, however, such systems have fundamental limitations. In recent years, non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers (OPMs), in combination with novel techniques for accurate background magnetic field control, have promised to lift those restrictions offering an adaptable, motion-robust MEG system, with improved data quality, at reduced cost. However, OPM-MEG remains a nascent technology, and whilst viable systems exist, most employ small numbers of sensors sited above targeted brain regions. Here, building on previous work, we construct a wearable OPM-MEG system with 'whole-head' coverage based upon commercially available OPMs, and test its capabilities to measure alpha, beta and gamma oscillations. We design two methods for OPM mounting; a flexible (EEG-like) cap and rigid (additively-manufactured) helmet. Whilst both designs allow for high quality data to be collected, we argue that the rigid helmet offers a more robust option with significant advantages for reconstruction of field data into 3D images of changes in neuronal current. Using repeat measurements in two participants, we show signal detection for our device to be highly robust. Moreover, via application of source-space modelling, we show that, despite having 5 times fewer sensors, our system exhibits comparable performance to an established cryogenic MEG device. While significant challenges still remain, these developments provide further evidence that OPM-MEG is likely to facilitate a step change for functional neuroimaging.


Assuntos
Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Neuroimagem Funcional/instrumentação , Dispositivos de Proteção da Cabeça , Magnetoencefalografia/instrumentação , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
14.
J Physiol ; 597(16): 4309-4324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240719

RESUMO

KEY POINTS: The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non-invasively. We use OPMs to record human cerebellar MEG signals elicited by air-puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum. ABSTRACT: We test the feasibility of an optically pumped magnetometer-based magnetoencephalographic (OP-MEG) system for the measurement of human cerebellar activity. This is to our knowledge the first study investigating the human cerebellar electrophysiology using optically pumped magnetometers. As a proof of principle, we use an air-puff stimulus to the eyeball in order to elicit cerebellar activity that is well characterized in non-human models. In three subjects, we observe an evoked component at approx. 50 ms post-stimulus, followed by a second component at approx. 85-115 ms post-stimulus. Source inversion localizes both components in the cerebellum, while control experiments exclude potential sources elsewhere. We also assess the induced oscillations, with time-frequency decompositions, and identify additional sources in the occipital lobe, a region expected to be active in our paradigm, and in the neck muscles. Neither of these contributes to the stimulus-evoked responses at 50-115 ms. We conclude that OP-MEG technology offers a promising way to advance the understanding of the information processing mechanisms in the human cerebellum.


Assuntos
Cerebelo/fisiologia , Magnetoencefalografia , Adulto , Piscadela , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Neuroimage ; 203: 116192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521823

RESUMO

Optically-pumped (OP) magnetometers allow magnetoencephalography (MEG) to be performed while a participant's head is unconstrained. To fully leverage this new technology, and in particular its capacity for mobility, the activity of deep brain structures which facilitate explorative behaviours such as navigation, must be detectable using OP-MEG. One such crucial brain region is the hippocampus. Here we had three healthy adult participants perform a hippocampal-dependent task - the imagination of novel scene imagery - while being scanned using OP-MEG. A conjunction analysis across these three participants revealed a significant change in theta power in the medial temporal lobe. The peak of this activated cluster was located in the anterior hippocampus. We repeated the experiment with the same participants in a conventional SQUID-MEG scanner and found similar engagement of the medial temporal lobe, also with a peak in the anterior hippocampus. These OP-MEG findings indicate exciting new opportunities for investigating the neural correlates of a range of crucial cognitive functions in naturalistic contexts including spatial navigation, episodic memory and social interactions.


Assuntos
Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imaginação/fisiologia , Masculino , Pessoa de Meia-Idade , Movimento , Processamento Espacial/fisiologia , Ritmo Teta
16.
Neuroimage ; 199: 598-608, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141737

RESUMO

Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly placed on any part of the body. The purpose of this review is to provide a neuroscience audience with the theoretical background needed to understand the physical basis for the signal observed by OPMs. Those already familiar with the physics of MRI and NMR should note that OPMs share much of the same theory as the operation of OPMs rely on magnetic resonance. This review establishes the physical basis for the signal equation for OPMs. We re-derive the equations defining the bounds on OPM performance and highlight the important trade-offs between quantities such as bandwidth, sensor size and sensitivity. These equations lead to a direct upper bound on the gain change due to cross-talk for a multi-channel OPM system.


Assuntos
Fenômenos Magnéticos , Magnetoencefalografia/instrumentação , Fenômenos Ópticos , Humanos , Magnetoencefalografia/métodos
17.
Neuroimage ; 201: 116099, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419612

RESUMO

One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.


Assuntos
Eletroencefalografia/instrumentação , Magnetoencefalografia/instrumentação , Neuroimagem/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino
18.
Neuroimage ; 199: 408-417, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173906

RESUMO

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR. Recently however, a new type of magnetoencephalography (MEG) device has been developed, that employs scalp-mounted optically-pumped magnetometers (OPMs) to measure brain electrophysiology. Lightweight OPMs, coupled with precise control of the background magnetic field, enables participant movement during data acquisition. Here, we exploit this technology to acquire MEG data whilst a participant uses a virtual reality head-mounted display (VRHMD). We show that, despite increased magnetic interference from the VRHMD, we were able to measure modulation of alpha-band oscillations, and the visual evoked field. Moreover, in a VR experiment in which a participant had to move their head to look around a virtual wall and view a visual stimulus, we showed that the measured MEG signals map spatially in accordance with the known organisation of primary visual cortex. This technique could transform the type of neuroscientific experiment that can be undertaken using functional neuroimaging.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Potenciais Evocados Visuais/fisiologia , Magnetoencefalografia/métodos , Realidade Virtual , Adulto , Humanos , Magnetoencefalografia/instrumentação , Córtex Visual/fisiologia
19.
Hum Brain Mapp ; 40(15): 4357-4369, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294909

RESUMO

Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head-casts and scanner-casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co-registration procedure or reliance on scalp landmarks.


Assuntos
Magnetometria/instrumentação , Modelos Teóricos , Algoritmos , Teorema de Bayes , Simulação por Computador , Estimulação Elétrica , Desenho de Equipamento , Potenciais Somatossensoriais Evocados/fisiologia , Cabeça/anatomia & histologia , Humanos , Funções Verossimilhança , Magnetoencefalografia/instrumentação , Magnetometria/métodos , Magnetometria/estatística & dados numéricos , Manequins , Cadeias de Markov , Nervo Mediano/fisiologia , Dispositivos Ópticos
20.
Neuroimage ; 181: 760-774, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031934

RESUMO

Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ±â€¯0.2 nT to 0.47 ±â€¯0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.


Assuntos
Encéfalo/fisiologia , Movimentos da Cabeça , Magnetoencefalografia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Eletromagnéticos , Medições dos Movimentos Oculares , Humanos , Campos Magnéticos , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Couro Cabeludo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa