Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230178, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39005032

RESUMO

Environmental DNA metabarcoding (eDNA metaB) is fundamental for monitoring marine biodiversity and its spread in coastal ecosystems. We applied eDNA metaB to seawater samples to investigate the spatiotemporal variability of plankton and small pelagic fish, comparing sites with different environmental conditions across a coast-to-offshore gradient at river mouths along the Campania coast (Italy) over 2 years (2020-2021). We found a marked seasonality in the planktonic community at the regional scale, likely owing to the hydrodynamic connection among sampling sites, which was derived from numerical simulations. Nonetheless, spatial variability among plankton communities was detected during summer. Overall, slight changes in plankton and fish composition resulted in the potential reorganization of the pelagic food web at the local scale. This work supports the utility of eDNA metaB in combination with hydrodynamic modelling to study marine biodiversity in the water column of coastal systems. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental , Peixes , Cadeia Alimentar , Plâncton , Animais , Peixes/genética , Peixes/fisiologia , Itália , DNA Ambiental/análise , Plâncton/genética , Plâncton/fisiologia , Água do Mar , Análise Espaço-Temporal , Estações do Ano
2.
Sci Rep ; 7(1): 4180, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646131

RESUMO

Anchovies represent the largest world's marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.


Assuntos
Peixes/genética , Variação Genética , Animais , Biomassa , Dieta , Meio Ambiente , Europa (Continente) , Loci Gênicos , Genética Populacional , Geografia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
3.
PLoS One ; 8(6): e67640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826331

RESUMO

Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.


Assuntos
Inteligência Artificial , Copépodes/fisiologia , Mecanotransdução Celular/fisiologia , Natação/fisiologia , Animais , Copépodes/classificação , Meio Ambiente , Modelos Biológicos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa