RESUMO
Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2-6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III-V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.
RESUMO
Here, we introduce a miniature beamline for transient absorption and dispersion spectroscopy, using a tailored deep ultraviolet field immediately after the noncollinear generation without subsequent optical elements. We explore the near-band-gap region in diamond in the presence of a few-femtosecond pump pulse where the delayed dynamical Franz-Keldysh effect and the almost instantaneous optical Kerr effect coexist.
RESUMO
Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can often be quite challenging. Although density functional theory has been reasonably successful to carry out such calculations, efficient, accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk bandgaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r2SCAN (two times revised strongly constrained and appropriately normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and local modified Becke-Johnson exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the density functional theory framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.
RESUMO
Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties. Electron microscopy and atomistic modeling are used to reconstruct and visualize this stacking fault and its terminating dislocations in the crystal. From band structure calculations coupled to photoluminescence measurements, we conclude that the I3 defect does not create states within the hex-Ge and hex-Si band gap. Therefore, the defect is not detrimental to the optoelectronic properties of the hex-SiGe materials family. Finally, highlighting the properties of this defect can be of great interest to the community of hex-III-Ns, where this defect is also present.
RESUMO
We investigate a family of free-standing quasi-two-dimensional silicon structures based on a planar square bilayer with adatom decorations. When attached to the bilayer, these adatoms form local reconstructions which resemble either a bishop's hat or elongated square bipyramids. We systematically constructed members of this family via exhaustive enumeration and then studied them using tight-binding and density-functional theory. We find that this geometry contributes significantly to the stability of the resulting structures, with some squared bilayers energetically more stable than the honeycomb bilayers. The most interesting phases were then characterized in more detail, and they all turned out metallic. Finally, we propose the [100] surface of ZrO2 as the most suitable substrate for the synthesis of these two-dimensional phases.
RESUMO
Metallization and dissociation are key transformations in diatomic molecules at high densities particularly significant for modeling giant planets. Using X-ray absorption spectroscopy and atomistic modeling, we demonstrate that in halogens, the formation of a connected molecular structure takes place at pressures well below metallization. Here we show that the iodine diatomic molecule first elongates by â¼0.007 Å up to a critical pressure of Pc â¼ 7 GPa, developing bonds between molecules. Then its length continuously decreases with pressure up to 15-20 GPa. Universal trends in halogens are shown and allow us to predict for chlorine a pressure of 42 ± 8 GPa for molecular bond-length reversal. Our findings contribute to tackling the molecule invariability paradigm in diatomic molecular phases at high pressures and may be generalized to other abundant diatomic molecules in the universe, including hydrogen.
RESUMO
A recent study associates carbon with single photon emitters (SPEs) in hexagonal boron nitride (h-BN). This observation, together with the high mobility of carbon in h-BN, suggests the existence of SPEs based on carbon clusters. Here, by means of density functional theory calculations, we studied clusters of substitutional carbon atoms up to tetramers in h-BN. Two different conformations of neutral carbon trimers have zero-point line energies and shifts of the phonon sideband compatible with typical photoluminescence spectra. Moreover, some conformations of two small C clusters next to each other result in photoluminescence spectra similar to those found in the experiments. We also showed that vacancies are unable to reproduce the typical features of the phonon sideband observed in most measurements because of the large spectral weight of low-energy breathing modes, ubiquitous in such defects.
RESUMO
The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.
RESUMO
The semimetallic bandstructure of graphene and silicene limit their use in functional devices. Mixing silicon and carbon offers a rather unexplored pathway to build semiconducting sheets compatible with current Si-based electronics. We present here a complete theoretical study of the phase diagram of two-dimensional silicon-carbon binaries. To scan the composition range, we employ an ab initio global structural prediction method, complemented by exhaustive enumeration of two-dimensional structure prototypes. We find a wealth of two-dimensional low-energy structures, from standard honeycomb single- and double-layers, passing by dumbbell geometries, to carbon nanosheets bridged by Si atoms. Many of these phases depart from planarity, either through buckling, or by germinating three-dimensional networks with a mixture of sp2 and sp3 bonds. We further characterize the most interesting crystal structures, unveiling a large variety of electronic properties, that could be exploited to develop high-performance electronic devices at the nanoscale.
RESUMO
The zinc blende (γ) phase of copper iodide holds the record hole conductivity for intrinsic transparent p-type semiconductors. In this work, we employ a high-throughput approach to systematically explore strategies for enhancing γ-CuI further by impurity incorporation. Our objectives are not only to find a practical approach to increase the hole conductivity in CuI thin films, but also to explore the possibility for ambivalent doping. In total 64 chemical elements were investigated as possible substitutionals on either the copper or the iodine site. All chalcogen elements were found to display acceptor character when substituting iodine, with sulfur and selenium significantly enhancing carrier concentrations produced by the native VCu defects under conditions most favorable for impurity incorporation. Furthermore, eight impurities suitable for n-type doping were discovered. Unfortunately, our work also reveals that donor doping is hindered by compensating native defects, making ambipolar doping unlikely. Finally, we investigated how the presence of impurities influences the optical properties. In the majority of the interesting cases, we found no deep states in the band-gap, showing that CuI remains transparent upon doping.
RESUMO
During the last few years, it has become more and more clear that functionals of the meta generalized gradient approximation (MGGA) are more accurate than GGA functionals for the geometry and energetics of electronic systems. However, MGGA functionals are also potentially more interesting for the electronic structure, in particular, when the potential is nonmultiplicative (i.e., when MGGAs are implemented in the generalized Kohn-Sham framework), which may help to get more accurate bandgaps. Here, we show that the calculation of bandgap of solids with MGGA functionals can also be done very accurately in a non-self-consistent manner. This scheme uses only the total energy and can, therefore, be very useful when the self-consistent implementation of a particular MGGA functional is not available. Since self-consistent MGGA calculations may be difficult to converge, the non-self-consistent scheme may also help to speed up the calculations. Furthermore, it can be applied to any other types of functionals, for which the implementation of the corresponding potential is not trivial.
RESUMO
We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be â¼10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.
RESUMO
We present simulations of the collapse under hydrostatic pressure of carbon nanotubes containing either water or carbon dioxide. We show that the molecules inside the tube alter the dynamics of the collapse process, providing either mechanical support and increasing the collapse pressure, or reducing mechanical stability. At the same time the nanotube acts as a nanoanvil, and the confinement leads to the nanostructuring of the molecules inside the collapsed tube. In this way, depending on the pressure and on the concentration of water or carbon dioxide inside the nanotube, we observe the formation of 1D molecular chains, 2D nanoribbons, and even molecular single and multi-walled nanotubes. The structure of the encapsulated molecules correlates with the mechanical response of the nanotube, opening up opportunities for the development of new devices or composite materials. Our analysis is quite general and it can be extended to other molecules in carbon nanotube nanoanvils, providing a strategy to obtain a variety of nano-objects with controlled features.
RESUMO
Barium silicides are versatile materials that have attracted attention for a variety of applications in electronics and optoelectronics. Using an unbiased structural search based on a particle-swarm optimization algorithm combined with density functional theory calculations, we investigate systematically the ground-state phase stability and the structural diversity of Ba-Si binaries under high pressure. The phase diagram turns out to be quite intricate, with several compositions stabilizing/destabilizing as a function of pressure. In particular, we identify novel phases of BaSi, BaSi2, BaSi3, and BaSi5 that might be synthesizable experimentally over a wide range of pressures. Our results not only clarify and complete the previously known structural phase diagram, but also provide new insights for understanding the Ba-Si binary system.
RESUMO
A major obstacle for computing optical spectra of solids is the lack of reliable approximations for capturing excitonic effects within time-dependent density functional theory. We show that the accurate prediction of strongly bound electron-hole pairs within this framework using simple approximations is still a challenge and that available promising results have to be revisited. Deriving a set of analytical formulas we analyze and explain the difficulties. We deduce an alternative approximation from an iterative scheme guided by previously available knowledge, significantly improving the description of exciton binding energies. Finally, we show how one can "read" exciton binding energies from spectra determined in the random phase approximation, without any further calculation.
RESUMO
Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.
RESUMO
A Comment on the Letter by H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, [Phys. Rev. Lett. 110, 118702 (2013).
Assuntos
Silício/química , Cristalização/métodosRESUMO
According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4)4 crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4)4.
RESUMO
Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.