Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1823(12): 2261-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23036890

RESUMO

Neuroglobin is a member of the globin superfamily expressed in vertebrate brain and retina. The protein is thought to be involved in neuronal protection from hypoxia or oxidative stress and could represent a key element of Alzheimer disease pathogenesis. Our aim was to determine whether neuroglobin could be directly associated with mitochondrial metabolism and integrity. We identified three different forms of neuroglobin in the retina, varying in their apparent molecular masses; all forms are abundant in mitochondrial fractions. This indicates that a significant fraction of the protein localizes within the organelle either in the matrix or in the matrix side of the inner membrane. Since neuroglobin was especially abundant in the ganglion cell layer, we transduced retinal ganglion cells with an anti-neuroglobin short hairpin RNA using in vivo electroporation. Neuroglobin knockdown leads to reduced activities of respiratory chain complexes I and III, degeneration of retinal ganglion cells, and impairment of visual function. The deleterious effect on cell survival was confirmed in primary retinal ganglion cells subjected to inhibition of neuroglobin expression. Hence, neuroglobin should be considered as a novel mitochondrial protein involved in respiratory chain function which is essential for retinal ganglion cell integrity.


Assuntos
Transporte de Elétrons/fisiologia , Globinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Western Blotting , Células Cultivadas , Angiofluoresceinografia , Globinas/antagonistas & inibidores , Globinas/genética , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neuroglobina , Neurônios/citologia , Nervo Óptico/citologia , Nervo Óptico/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Brain ; 135(Pt 1): 35-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22120150

RESUMO

The Harlequin mutant mouse, characterized by loss of function of apoptosis-inducing factor, represents a reliable genetic model that resembles pathologies caused by human mitochondrial complex I deficiency. Therefore, we extensively characterized the retinal morphology and function of Harlequin mice during the course of neuronal cell death leading to blindness, with the aim of preventing optic atrophy. Retinas and optic nerves from these mice showed an isolated respiratory chain complex I defect correlated with retinal ganglion cell loss, optic atrophy, glial and microglial cell activation. All of these changes led to irreversible vision loss. In control mice, retinas AIF1 messenger RNA was 2.3-fold more abundant than AIF2, both messenger RNAs being sorted to the mitochondrial surface. In Harlequin mouse retinas, there was a 96% decrease of both AIF1 and AIF2 messenger RNA steady-state levels. We attained substantial and long-lasting protection of retinal ganglion cell and optic nerve integrity, the preservation of complex I function in optic nerves, as well as the prevention of glial and microglial responses after intravitreal administration of an AAV2 vector containing the full-length open reading frame and the 3' untranslated region of the AIF1 gene. Therefore, we demonstrate that gene therapy for mitochondrial diseases due to mutations in nuclear DNA can be achieved, so long as the 'therapeutic gene' permits the accurate cellular localization of the corresponding messenger RNA.


Assuntos
Fator de Indução de Apoptose/genética , Regulação para Baixo , Terapia Genética , Atrofia Óptica/terapia , Animais , Fator de Indução de Apoptose/metabolismo , Modelos Animais de Doenças , Camundongos , Atrofia Óptica/genética , Atrofia Óptica/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Retina/metabolismo , Retina/patologia
3.
Am J Hum Genet ; 83(3): 373-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18771762

RESUMO

Mitochondrial diseases due to mutations in mitochondrial DNA can no longer be ignored in most medical areas. With prevalence certainly higher than one in 6000, they probably represent the most common form of metabolic disorders. Despite progress in identification of their molecular mechanisms, little has been done with regard to therapy. We have recently optimized the allotopic expression for the mitochondrial genes ATP6, ND1, and ND4 and obtained a complete and long-lasting rescue of mitochondrial dysfunction in the human fibroblasts in which these genes were mutated. However, biosafety and benefit to mitochondrial function must be validated in animal models prior to clinical applications. To create an animal model of Leber Hereditary Optic Neuropathy (LHON), we introduced the human ND4 gene harboring the G11778A mutation, responsible of 60% of LHON cases, to rat eyes by in vivo electroporation. The treatment induced the degeneration of retinal ganglion cells (RGCs), which were 40% less abundant in treated eyes than in control eyes. This deleterious effect was also confirmed in primary cell culture, in which both RGC survival and neurite outgrowth were compromised. Importantly, RGC loss was clearly associated with a decline in visual performance. A subsequent electroporation with wild-type ND4 prevented both RGC loss and the impairment of visual function. Hence, these data provide the proof-of-principle that optimized allotopic expression can be an effective treatment for LHON, and they open the way to clinical studies on other devastating mitochondrial disorders.


Assuntos
Cegueira/patologia , DNA Mitocondrial/metabolismo , NADH Desidrogenase/biossíntese , Atrofia Óptica Hereditária de Leber/genética , Animais , Cegueira/genética , Cegueira/metabolismo , DNA Mitocondrial/genética , Humanos , Masculino , Mutação , NADH Desidrogenase/genética , Ratos , Ratos Long-Evans , Ratos Wistar , Células Ganglionares da Retina/patologia
4.
Biochim Biophys Acta ; 1783(10): 1707-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18513491

RESUMO

Leber's Hereditary Optic Neuropathy (LHON) was the first maternally inherited mitochondrial disease identified and is now considered the most prevalent mitochondrial disorder. LHON patients harbor mutations in mitochondrial DNA (mtDNA). In about 90% of cases, the genes involved encode proteins of the respiratory chain complex I. Even though the molecular bases are known since 20 years almost all remains to be done regarding physiopathology and therapy. In this study, we report a severe decrease of complex I activity in cultured skin fibroblasts isolated from two LHON patients harboring mutations in ND4 or ND1 genes. Most importantly, we were able to restore sustainably (a) the ability to grow on galactose, (b) the ATP synthesis rate and (c) the complex I activity, initially impaired in these cells. Our strategy consisted of forcing mRNAs from nuclearly-encoded ND1 and ND4 genes to localize to the mitochondrial surface. The rescue of the respiratory chain defect observed was possible by discreet amounts of hybrid mRNAs and fusion proteins demonstrating the efficiency of their mitochondrial import. Hence, we confirmed here for two mitochondrial genes located in the organelle that the optimized allotopic expression approach represents a powerful tool that could ultimately be applied in human therapy for LHON.


Assuntos
Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Células Cultivadas , Meios de Cultura , Transporte de Elétrons , Fibroblastos/enzimologia , Galactose , Humanos , Masculino , Mutação/genética , Ligação Proteica , RNA Mensageiro/genética , Transgenes/genética
5.
Orphanet J Rare Dis ; 9: 55, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24741995

RESUMO

BACKGROUND: Almost 90% of all cases of congenital, non-syndromic, severe to profound inherited deafness display an autosomal recessive mode of transmission (DFNB forms). To date, 47 causal DFNB genes have been identified, but many others remain to be discovered. We report the study of two siblings born to consanguineous Algerian parents and affected by isolated, profound congenital deafness. METHOD: Whole-exome sequencing was carried out on these patients after a failure to identify mutations in the DFNB genes frequently involved. RESULTS: A biallelic nonsense mutation, c.88C > T (p.Gln30*), was identified in EPS8 that encodes epidermal growth factor receptor pathway substrate 8, a 822 amino-acid protein involved in actin dynamics. This mutation predicts a truncated inactive protein or no protein at all. The mutation was also present, in the heterozygous state, in one clinically unaffected sibling and in both unaffected parents, and was absent from the other two unaffected siblings. It was not found in 120 Algerian normal hearing control individuals or in the Exome Variant Server database. EPS8 is an F-actin capping and bundling protein. Mutant mice lacking EPS8 (Eps8-/- mice), which is present in the hair bundle, the sensory antenna of the auditory sensory cells that operate the mechano-electrical transduction, are also profoundly deaf and have abnormally short hair bundle stereocilia. CONCLUSION: This new DFNB form is likely to arise from abnormal hair bundles resulting in compromised detection of physiological sound pressures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/genética , Estereocílios/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Primers do DNA , Exoma , Feminino , Humanos , Masculino , Camundongos , Linhagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa