Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1265964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143446

RESUMO

Introduction: The lack of well-preserved material upon which to base the paleo-microbiological detection of Plasmodium parasites has prevented extensive documentation of past outbreaks of malaria in Europe. By trapping intact erythrocytes at the time of death, dental pulp has been shown to be a suitable tissue for documenting ancient intraerythrocytic pathogens such as Plasmodium parasites. Methods: Total DNA and proteins extracted from 23 dental pulp specimens collected from individuals exhumed from the 9th to 13th century archaeological site in Mariana, Corsica, were analyzed using open-mind paleo-auto-immunohistochemistry and direct metagenomics, Plasmodium-targeting immunochromatography assays. All experiments incorporated appropriate negative controls. Results: Paleo-auto-immunohistochemistry revealed the presence of parasites Plasmodium spp. in the dental pulp of nine teeth. A further immunochromatography assay identified the presence of at least one Plasmodium antigen in nine individuals. The nine teeth, for which the PfHRP-2 antigen specific of P. falciparum was detected, were also positive using paleo-autoimmunohistochemistry and metagenomics. Conclusion: Dental pulp erythrocytes proved to be suitable for the direct paleomicrobiology documentation of malaria in nine individuals buried in medieval Corsica, in agreement with historical data. This provides additional information on the millennial dynamics of Plasmodium spp. in the Mediterranean basin.

2.
Sci Rep ; 8(1): 9197, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907776

RESUMO

The oral fluid microbiome comprises an important bacterial diversity, yet the presence of archaea has not been reported so far. In order to quest for the presence of methanogenic archaea (methanogens) in oral fluid, we used a polyphasic approach including PCR-sequencing detection, microscopic observation by fluorescence in-situ hybridization, isolation and culture, molecular identification and genotyping of methanogens in 200 oral fluid specimens. In the presence of negative controls, 64/200 (32%) prospectively analysed oral fluid specimens were PCR-positive for methanogens, all identified as Methanobrevibacter oralis by sequencing. Further, fluorescence in-situ hybridization detected methanogens in 19/48 (39.6%) investigated specimens; with morphology suggesting M. oralis in 10 cases and co-infecting Methanobrevibacter smithii in nine cases. M. oralis was cultured from 46/64 (71.8%) PCR-positive specimens and none of PCR-negative specimens; and one M. smithii isolate was co-cultured with M. oralis in one specimen. Multispacer Sequence Typing found one M. oralis genotype per specimen and a total of five different genotypes with 19/46 (41%) of isolates all belonging to spacer-type four. Statistical analyses showed a significant correlation between the PCR-detection of methanogens in oral fluid and tobacco smoking. These data indicate that M. oralis and M. smithii are oral fluid-borne methanogens in tobacco smokers. Both methanogens could be transmitted during intimate contacts such as mother-to-child contacts and kissing.


Assuntos
Methanobrevibacter , Microbiota , Boca/microbiologia , Fumar Tabaco , Estudos Transversais , Feminino , Humanos , Masculino , Methanobrevibacter/classificação , Methanobrevibacter/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa