Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7990): 53-56, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057569

RESUMO

Galactic outflows are believed to play a critical role in the evolution of galaxies by regulating their mass build-up and star formation1. Theoretical models assume bipolar shapes for the outflows that extend well into the circumgalactic medium (CGM), up to tens of kiloparsecs (kpc) perpendicular to the galaxies. They have been directly observed in the local Universe in several individual galaxies, for example, around the Milky Way and M82 (refs. 2,3). At higher redshifts, cosmological simulations of galaxy formation predict an increase in the frequency and efficiency of galactic outflows owing to the increasing star-formation activity4. Galactic outflows are usually of low gas density and low surface brightness and therefore difficult to observe in emission towards high redshifts. Here we present an ultra-deep Multi-Unit Spectroscopic Explorer (MUSE) image of the mean Mg II emission surrounding a sample of galaxies at z ≈ 1 that strongly suggests the presence of outflowing gas on physical scales of more than 10 kpc. We find a strong dependence of the detected signal on the inclination of the central galaxy, with edge-on galaxies clearly showing enhanced Mg II emission along the minor axis, whereas face-on galaxies show much weaker and more isotropic emission. We interpret these findings as supporting the idea that outflows typically have a bipolar cone geometry perpendicular to the galactic disk. We demonstrate that this CGM-scale outflow is prevalent among galaxies with stellar mass M* ≳ 109.5M⊙.

2.
Bioelectromagnetics ; 40(8): 539-552, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31564068

RESUMO

The present analysis revisits the impact of extremely low-frequency magnetic fields (ELF-MF) on melatonin (MLT) levels in human and rat subjects using both a parametric and non-parametric approach. In this analysis, we use 62 studies from review articles. The parametric approach consists of a Bayesian logistic regression (LR) analysis and the non-parametric approach consists of a Support Vector analysis, both of which are robust against spurious/false results. Both approaches reveal a unique well-ordered pattern, and show that human and rat studies are consistent with each other once the MF strength is restricted to cover the same range (with B ≲ 50 µT). In addition, the data reveal that chronic exposure (longer than ∼22 days) to ELF-MF appears to decrease MLT levels only when the MF strength is below a threshold of ~30 µT ( log B thr [ µ T ] = 1 . 4 - 0 . 4 + 0 . 7 ), i.e., when the man-made ELF-MF intensity is below that of the static geomagnetic field. Studies reporting an association between ELF-MF and changes to MLT levels and the opposite (no association with ELF-MF) can be reconciled under a single framework. Bioelectromagnetics. 2019;40:539-552. © 2019 Bioelectromagnetics Society.


Assuntos
Campos Magnéticos , Melatonina/metabolismo , Animais , Teorema de Bayes , Humanos , Modelos Logísticos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa