RESUMO
Administration of bolus intravenous fluids, common in pre-hospital and hospitalised patients, is associated with increased lung vascular permeability and mortality outside underlying disease states. In our laboratory, the induction of lung injury and oedema through rapid administration of intravenous fluid in rats was reduced by a non-specific antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. The aims of this study were to determine the effect of selective TRPV4 inhibition on fluid-induced lung injury (FILI) and compare the potency of FILI inhibition to that of an established model of TRPV4 agonist-induced lung oedema. In a series of experiments, rats received specific TRPV4 inhibitor (GSK2789917) at high (15 µg/kg), medium (5 µg/kg) or low (2 µg/kg) dose or vehicle prior to induction of lung injury by intravenous infusion of TRPV4 agonist (GSK1016790) or saline. GSK1016790 significantly increased lung wet weight/body weight ratio by 96% and lung wet-to-dry weight ratio by 43% in vehicle pre-treated rats, which was inhibited by GSK2789917 in a dose-dependent manner (IC50 = 3 ng/mL). Similarly, in a single-dose study, bolus saline infusion significantly increased lung wet weight/body weight by 17% and lung wet-to-dry weight ratio by 15%, which was attenuated by high dose GSK2789917. However, in a final GSK2789917 dose-response study, inhibition did not reach significance and an inhibitory potency was not determined due to the lack of a clear dose-response. In the FILI model, TRPV4 may have a role in lung injury induced by rapid-fluid infusion, indicated by inconsistent amelioration with high dose TRPV4 antagonist.
RESUMO
Recently, buffered salt solutions and 20% albumin (small volume resuscitation) have been advocated as an alternative fluid for intravenous resuscitation. The relative comparative efficacy and potential adverse effects of these solutions have not been evaluated. In a randomized, double blind, cross-over study of six healthy male subjects we compared the pulmonary and hemodynamic effects of intravenous administration of 30 ml/kg of 0.9% saline, Hartmann's solution and 4% albumin, and 6 ml/kg of 20% albumin (albumin dose equivalent). Lung tests (spirometry, ultrasound, impulse oscillometry, diffusion capacity, and plethysmography), two- to three-dimensional Doppler echocardiography, carotid applanation tonometry, blood gases, serum/urine markers of endothelial, and kidney injury were measured before and after each fluid bolus. Data were analyzed with repeated measures ANOVA with effect of fluid type examined as an interaction. Crystalloids caused lung edema [increase in ultrasound B line (P = 0.006) and airway resistance (P = 0.009)], but evidence of lung injury [increased angiopoietin-2 (P = 0.019)] and glycocalyx injury [increased syndecan (P = 0.026)] was only observed with 0.9% saline. The colloids caused greater left atrial stretch, decrease in lung volumes, and increase in diffusion capacity than the crystalloids, but without pulmonary edema. Stroke work increased proportionally to increase in preload with all four fluids (R2 = 0.71). There was a greater increase in cardiac output and stroke volume after colloid administration, associated with a reduction in afterload. Hartmann's solution did not significantly alter ventricular performance. Markers of kidney injury were not affected by any of the fluids administrated. Bolus administration of 20% albumin is both effective and safe in healthy subjects. NEW & NOTEWORTHY Bolus administration of 20% albumin is both effective and safe in healthy subjects when compared with other commonly available crystalloids and colloidal solution.
Assuntos
Albuminas/administração & dosagem , Albuminas/efeitos adversos , Hidratação/efeitos adversos , Ressuscitação/efeitos adversos , Adulto , Angiopoietina-2/metabolismo , Débito Cardíaco/efeitos dos fármacos , Coloides/administração & dosagem , Coloides/efeitos adversos , Estudos Cross-Over , Soluções Cristaloides/administração & dosagem , Soluções Cristaloides/efeitos adversos , Método Duplo-Cego , Hemodinâmica/efeitos dos fármacos , Humanos , Infusões Intravenosas/métodos , Soluções Isotônicas/administração & dosagem , Soluções Isotônicas/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Edema Pulmonar/metabolismoRESUMO
Purpose: Diagnostic radiation is an important part of patient care in the Intensive Care Unit; however, there is little data on the acute effects of exposure to these doses. We investigated pulmonary and splenic response 30 minutes, 4 hours or 24 hours after exposure to 2 mGy, 20 mGy, 200 mGy or 4 Gy whole-body X-radiation in a Sprague Dawley rat model. Materials and methods: Lung injury was assessed via respiratory mechanics, pulmonary edema, cellular, and proteinaceous fluid infiltrate and protein expression of oxidative stress markers. The radiation effect on the spleen was determined via proliferation, apoptosis and protein expression of oxidative stress markers. Results: All measurements of the lung did not differ from sham animals except for an increase in catalase after high dose exposure. Stimulated splenocyte proliferation increased after sham and low dose exposure, did not change after 200 mGy exposure and was significantly lower after 4 Gy exposure. The number of apoptotic cells increased 4 hours after 4 Gy exposure. There were fewer apoptotic cells after low dose exposure compared to sham. Both catalase and MnSOD were increased after 4 Gy exposure. Conclusion: There was no measured effect on pulmonary function while there was an impact to the spleen after low and high dose exposure.