Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Chem Biol ; 12(10): 779-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27479743

RESUMO

Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Piridonas/farmacologia , Tiofenos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Piridonas/química , Relação Estrutura-Atividade , Tiofenos/química
2.
Proc Natl Acad Sci U S A ; 112(32): E4410-7, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216984

RESUMO

Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼ 200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors.


Assuntos
Adenocarcinoma/classificação , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/metabolismo , Metaboloma , Metabolômica , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/genética , Humanos , Concentração Inibidora 50 , Lipogênese/genética , Mesoderma/metabolismo , Mesoderma/patologia , Metaboloma/genética , Reprodutibilidade dos Testes , Transcrição Gênica
3.
J Biol Chem ; 290(14): 9075-86, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25681442

RESUMO

The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer.


Assuntos
Genes Supressores de Tumor , Profilinas/metabolismo , Serina/metabolismo , Frações Subcelulares/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Fosforilação , Profilinas/química
4.
Proc Natl Acad Sci U S A ; 110(41): E3937-44, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24067649

RESUMO

The protein 14-3-3σ (stratifin) is frequently described as a tumor suppressor silenced in about 80% of breast tumors. Intriguingly, we show that 14-3-3σ expression, which in normal breast is localized to the myoepithelial cells, tracks with malignant phenotype in two models of basal-like breast cancer progression, and in patients, it is associated with basal-like subtype and poor clinical outcome. We characterized a mechanism by which 14-3-3σ guides breast tumor invasion by integrating cytoskeletal dynamics: it stabilizes a complex of solubilized actin and intermediate filaments to maintain a pool of "bioavailable" complexes for polarized assembly during migration. We show that formation of the actin/cytokeratin/14-3-3σ complex and cellular migration are regulated by PKCζ-dependent phosphorylation, a finding that could form the basis for intervention in aggressive breast carcinomas expressing 14-3-3σ. Our data suggest that the biology of this protein is important in cellular movement and is contingent on breast cancer subtype.


Assuntos
Proteínas 14-3-3/metabolismo , Actinas/metabolismo , Neoplasias da Mama/fisiopatologia , Filamentos Intermediários/metabolismo , Invasividade Neoplásica/fisiopatologia , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular , Feminino , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Microscopia Confocal
5.
Proc Natl Acad Sci U S A ; 109(47): 19280-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129656

RESUMO

Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA(11a) is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. "Reversion" of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA(11a), overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA(11a) reduced the migratory and invasive ability of these cells. hMENA(11a) splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA(11a), and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA(11a)-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA(11a). These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mesoderma/patologia , Proteínas dos Microfilamentos/genética , Citoesqueleto de Actina/metabolismo , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Clonagem Molecular , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Mesoderma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transfecção , Vimentina/metabolismo
6.
Front Cell Dev Biol ; 9: 692269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235154

RESUMO

The essential actin-binding factor profilin-1 (Pfn1) is a non-classical tumor suppressor with the abilities toboth inhibit cellular proliferation and augment chemotherapy-induced apoptosis. Besides actin, Pfn1 interacts with proteins harboring the poly-L-proline (PLP) motifs. Our recent work demonstrated that both nuclear localization and PLP-binding are required for tumor growth inhibition by Pfn1, and this is at least partially due to Pfn1 association with the PLP-containing ENL protein in the Super Elongation Complex (SEC) and the transcriptional inhibition of pro-cancer genes. In this paper, by identifying a phosphorylation event of Pfn1 at Ser71 capable of inhibiting its actin-binding and nuclear export, we provide in vitro and in vivo evidence that chemotherapy-induced apoptotic sensitization by Pfn1 requires its cytoplasmic localization and actin-binding. With regard to tumor growth inhibition byPfn1, our data indicate a requirement for dynamic actin association and dissociation rendered by reversible Ser71phosphorylation and dephosphorylation. Furthermore, genetic and pharmacological experiments showed that Ser71 of Pfn1 can be phosphorylated by protein kinase A (PKA). Taken together, our data provide novel mechanistic insights into the multifaceted anticancer activities of Pfn1 and how they are spatially-defined in the cell and differentially regulated by ligand-binding.

7.
Biophys J ; 99(9): 2775-83, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21044574

RESUMO

The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.


Assuntos
Fibras de Estresse/fisiologia , Fenômenos Biomecânicos , Fenômenos Biofísicos , Compartimento Celular , Linhagem Celular Tumoral , Forma Celular/fisiologia , Elasticidade , Matriz Extracelular/fisiologia , Glioma/fisiopatologia , Humanos , Terapia a Laser , Quinase de Cadeia Leve de Miosina/fisiologia , Nanotecnologia , Viscosidade , Quinases Associadas a rho/fisiologia
8.
Cancer Metastasis Rev ; 28(1-2): 167-76, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19160017

RESUMO

Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra--to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.


Assuntos
Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Diferenciação Celular , Cromatina/metabolismo , Genoma , Homeostase , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Modelos Biológicos , Transdução de Sinais
9.
PLoS One ; 9(2): e88309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516633

RESUMO

Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression datasets containing ∼5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets. Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and other well-established prognostic signatures; although the immune modules were highly correlated to previously published immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS). Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation; and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a good prognosis without chemotherapy and a good response to chemotherapy, suggesting the paradox of high immune patients who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite common themes were associated with different sites of metastasis, possibly relating to the "seed and soil" hypothesis of cancer dissemination. Overall, co-expression modules provide a high-level functional view of breast cancer that complements the "cancer hallmarks" and may form the basis for improved predictors and treatments.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias da Mama/patologia , Análise por Conglomerados , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Prognóstico
10.
Cancer Metab ; 2(1): 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379179

RESUMO

BACKGROUND: Accumulating preclinical and clinical evidence implicates epithelial-mesenchymal transition (EMT) in acquired resistance to anticancer drugs; however, mechanisms by which the mesenchymal state determines drug resistance remain unknown. RESULTS: To explore a potential role for altered cellular metabolism in EMT and associated drug resistance, we analyzed the metabolome and transcriptome of three lung cancer cell lines that were rendered drug resistant following experimental induction of EMT. This analysis revealed evidence of metabolic rewiring during EMT that diverts glucose to the TCA cycle. Such rewiring was at least partially mediated by the reduced expression of pyruvate dehydrogenase kinase 4 (PDK4), which serves as a gatekeeper of the TCA cycle by inactivating pyruvate dehydrogenase (PDH). Overexpression of PDK4 partially blocked TGFß-induced EMT; conversely, PDK4 inhibition via RNAi-mediated knockdown was sufficient to drive EMT and promoted erlotinib resistance in EGFR mutant lung cancer cells. We identified a novel interaction between PDK4 and apoptosis-inducing factor (AIF), an inner mitochondrial protein that appears to play a role in mediating this resistance. In addition, analysis of human tumor samples revealed PDK4-low as a predictor of poor prognosis in lung cancer and that PDK4 expression is dramatically downregulated in most tumor types. CONCLUSIONS: Together, these findings implicate PDK4 as a critical metabolic regulator of EMT and associated drug resistance.

11.
Cell Adh Migr ; 6(3): 236-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22863741

RESUMO

The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Microambiente Tumoral , Animais , Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/fisiopatologia , Comunicação Parácrina , Transdução de Sinais
12.
Cancer Res ; 69(16): 6721-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19654314

RESUMO

Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1alpha-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.


Assuntos
Movimento Celular , Polaridade Celular/fisiologia , Células Endoteliais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Indutores da Angiogênese/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Polaridade Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Análise por Conglomerados , Células Endoteliais/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Modelos Biológicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Obesity (Silver Spring) ; 15(2): 288-302, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17299101

RESUMO

OBJECTIVE: To determine whether adipocyte enhancer binding protein (AEBP) 1, a transcriptional repressor that is down-regulated during adipogenesis, functions as a critical regulator of adipose tissue homeostasis through modulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) tumor suppressor activity and mitogen-activated protein kinase (MAPK) activation. RESEARCH METHODS AND PROCEDURES: We examined whether AEBP1 physically interacts with PTEN in 3T3-L1 cells by coimmunoprecipitation analysis. We generated AEBP1-null mice and examined the physiological role of AEBP1 as a key modulator of in vivo adiposity. Using adipose tissue from wild-type and AEBP1-null animals, we examined whether AEBP1 affects PTEN protein level. RESULTS: AEBP1 interacts with PTEN, and deficiency of AEBP1 increases adipose tissue PTEN mass. AEBP1-null mice have reduced adipose tissue mass and enhanced apoptosis with suppressed survival signal. Primary pre-adipocytes from AEBP1-null adipose tissues exhibit lower basal MAPK activity with defective proliferative potential. AEBP1-null mice are also resistant to diet-induced obesity, suggesting a regulatory role for AEBP1 in energy homeostasis. DISCUSSION: Our results suggest that AEBP1 negatively regulates adipose tissue PTEN levels, in conjunction with its role in proliferation and differentiation of pre-adipocytes, as a key functional role in modulation of in vivo adiposity.


Assuntos
Adiposidade/genética , Carboxipeptidases/fisiologia , Metabolismo Energético/genética , Homeostase/genética , Proteínas Repressoras/fisiologia , Células 3T3-L1 , Tecido Adiposo Branco/fisiologia , Animais , Apoptose , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa