Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 6(5): 683-701, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200814

RESUMO

Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.

2.
bioRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013260

RESUMO

To generate drug molecules of desired properties with computational methods is the holy grail in pharmaceutical research. Here we describe an AI strategy, retro drug design, or RDD, to generate novel small molecule drugs from scratch to meet predefined requirements, including but not limited to biological activity against a drug target, and optimal range of physicochemical and ADMET properties. Traditional predictive models were first trained over experimental data for the target properties, using an atom typing based molecular descriptor system, ATP. Monte Carlo sampling algorithm was then utilized to find the solutions in the ATP space defined by the target properties, and the deep learning model of Seq2Seq was employed to decode molecular structures from the solutions. To test feasibility of the algorithm, we challenged RDD to generate novel drugs that can activate µ opioid receptor (MOR) and penetrate blood brain barrier (BBB). Starting from vectors of random numbers, RDD generated 180,000 chemical structures, of which 78% were chemically valid. About 42,000 (31%) of the valid structures fell into the property space defined by MOR activity and BBB permeability. Out of the 42,000 structures, only 267 chemicals were commercially available, indicating a high extent of novelty of the AI-generated compounds. We purchased and assayed 96 compounds, and 25 of which were found to be MOR agonists. These compounds also have excellent BBB scores. The results presented in this paper illustrate that RDD has potential to revolutionize the current drug discovery process and create novel structures with multiple desired properties, including biological functions and ADMET properties. Availability of an AI-enabled fast track in drug discovery is essential to cope with emergent public health threat, such as pandemic of COVID-19.

3.
Nat Biotechnol ; 39(6): 747-753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33623157

RESUMO

Computational approaches for drug discovery, such as quantitative structure-activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2/efeitos dos fármacos , COVID-19/genética , COVID-19/virologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , SARS-CoV-2/patogenicidade
4.
bioRxiv ; 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32766591

RESUMO

The recent global pandemic caused by the new coronavirus SARS-CoV-2 presents an urgent need for new therapeutic candidates. While the importance of traditional in silico approaches such as QSAR in such efforts in unquestionable, these models fundamentally rely on structural similarity to infer biological activity and are thus prone to becoming trapped in the very nearby chemical spaces of already known ligands. For novel and unprecedented threats such as COVID-19 much faster and efficient paradigms must be devised to accelerate the identification of new chemical classes for rapid drug development. Here we report the development of a new biological activity-based modeling (BABM) approach that builds on the hypothesis that compounds with similar activity patterns tend to share similar targets or mechanisms of action. In BABM, compound activity profiles established on massive scale across multiple assays are used as signatures to predict compound activity in a new assay or against a new target. We first trained and validated this approach by identifying new antiviral lead candidates for Zika and Ebola based on data from ~0.5 million compounds screened against ~2,000 assays. BABM models were then applied to predict ~300 compounds not previously reported to have activity for SARS-CoV-2, which were then tested in a live virus assay with high (>30%) hit rates. The most potent compounds showed antiviral activities in the nanomolar range. These potent confirmed compounds have the potential to be further developed in novel chemical space into new anti-SARS-CoV-2 therapies. These results demonstrate unprecedented ability using BABM to predict novel structures as chemical leads significantly beyond traditional methods, and its application in rapid drug discovery response in a global public health crisis.

5.
ACS Cent Sci ; 4(12): 1727-1741, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648156

RESUMO

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (-)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa