Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 90(5): 336-352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423032

RESUMO

Ephedra species are among the most popular herbs used in traditional medicine for a long time. The ancient Chinese medical book "Treatise on Febrile Diseases" refers to the classic traditional Chinese medicine prescription Ge Gen decoction, which consists of seven herbs, including an Ephedra species. Ephedra species are utilized all over the world to treat symptoms of the common cold and coughs, and to combat major human diseases, such as asthma, cancers, diabetes, cardiovascular and digestive disorders, and microbial infections. This study aimed at identifying specific Ephedra species used traditionally in Morocco for therapeutic purposes. The plant parts, their preparation process, and the treated pathologies were identified and analyzed. The results revealed five ethnobotanically important species of Ephedra: Ephedra alata Decne, Ephedra altissima Desf., Ephedra distachya L., Ephedra fragilis Desf., and Ephedra nebrodensis Tineo. These species are used traditionally in Morocco for treating people with diabetes, cancer, rheumatism, cold and asthma, hypertension, influenza virus infection, and respiratory ailments. In addition, they are occasionally used as calefacient agents, to regulate weight, or for capillary care. Few studies have underlined the antibacterial and antioxidant activities of some of these Moroccan Ephedra species, but little information is available regarding the natural products at the origin of the bioactivities. Further phytochemical investigations and clinical data are encouraged to better support the use of these plants.


Assuntos
Asma , Diabetes Mellitus , Ephedra , Humanos , Etnobotânica , Medicina Tradicional
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928509

RESUMO

Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.


Assuntos
Cumarínicos , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Triazóis , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Triazóis/química , Triazóis/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Teoria da Densidade Funcional
3.
Steroids ; 207: 109439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740121

RESUMO

The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.


Assuntos
Extratos Vegetais , Withania , Vitanolídeos , Withania/química , Vitanolídeos/farmacologia , Vitanolídeos/química , Vitanolídeos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Animais , Folhas de Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Raízes de Plantas/química
4.
Antibiotics (Basel) ; 13(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391524

RESUMO

Essential oils are of great interest due to their potent pharmaceutical and biological activities. In this study, essential oils extracted from Origanum compactum and Thymus zygis originating from the Middle Atlas of Morocco were investigated. Their chemical compositions were analyzed using gas chromatography and mass spectrometry, while the assessment of the trapping power of the radical (DPPH: 1,1-diphenyl-2-picrylhydrazyl) and the reducing antioxidant potential of ferric ions (FRAP: Ferric Reducing Antioxidant Power) were performed in order to evaluate the antioxidant activity. Their antibacterial potency was tested against six bacterial strains through the disk diffusion method. The chromatography analyses of the extracted essential oils highlighted the presence of two main components, namely carvacrol at 75.70% in O. compactum and thymol at 40.67% in T. zygis. The antioxidant activity tests showed that both essential oils demonstrated a significant antioxidant activity comparable to the positive control (e.g., ascorbic acid). The antibacterial activity results showed a strong antimicrobial effect for both essential oils, compared to synthetic antibiotics. This study affirms the presence of bioactive components with interesting antioxidant and antibacterial activities in the essential oils extracted from Origanum compactum and Thymus zygis, which could find several applications in the food and pharmaceutical industries through the substitution of synthetic antioxidants and antibiotics.

5.
Heliyon ; 10(3): e24563, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317922

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 µg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 µg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.

6.
Front Nutr ; 11: 1352548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835963

RESUMO

Introduction: Cubeb, Piper cubeba L., has been used for centuries in traditional medicine and culinary practices, with a wide range of biological and pharmacological activities. Objective: Herein, we determined the phytochemical profile, mineral, fatty acids, and amino acid contents of P. cubeba berries and assessed the dermacosmeceutical properties of their water extract and essential oil (EO). These included assessing their antioxidant and antibacterial activities as well as their in vitro inhibitory activities against tyrosinase and elastase enzymes. In addition, molecular docking and molecular dynamics studies were performed on the major identified compounds of the EO. Results and discussion: A total of forty-three compounds belonging to organic acids, phenolic acids and flavonoids were found in the water extract, while 36 volatile compounds were identified in the EO with Z-isoeugenol, dihydroeugenol, ß-pinene, E-caryophyllene, and 1,8-cineole as major constituents. The berries were found to be rich in sodium and iron, have moderate zinc content along with low contents of total nitrogen, phosphorus, and potassium. Amino acid analysis revealed a considerable concentration of isoleucine and phenylalanine, whereas 11,14,17-eicosatrienoic acid and linoleic acid were identified as the major fatty acids. In the DPPH and FRAP assays, the water extract elicited considerable antioxidant activity compared to the reference compounds. Enzyme inhibitory assays revealed that the EO had a potential to inhibit tyrosinase and elastase enzymes with IC50 values of 340.56 and 86.04 µg/mL, respectively. The water extract and EO completely inhibited the bacterial growth at MIC of 50 mg/mL and 20%, respectively. At sub-MIC concentrations, the extract and the EO substantially reduced the biofilm formation by up to 26.63 and 77.77%, respectively, as well as the swimming and swarming motilities in a dose-dependent manner. Molecular docking and molecular dynamics showed that the five main components of P. cubeba EO could be the major contributors to the elastase and tyrosinase inhibitory effect. Conclusion: This study emphasizes the promising potential of P. cubeba as a valuable source of natural compounds that can be utilized for the development of innovative pharmaceuticals, dietary supplements, and dermacosmeceutical agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa