Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Lipid Res ; : 100574, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857781

RESUMO

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMP catabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 µM and approximately 30 µM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 µM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.

2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047013

RESUMO

Arginine methylation is a form of posttranslational modification that regulates many cellular functions such as development, DNA damage repair, inflammatory response, splicing, and signal transduction, among others. Protein arginine methyltransferase 5 (PRMT5) is one of nine identified methyltransferases, and it can methylate both histone and non-histone targets. It has pleiotropic functions, including recruitment of repair machinery to a chromosomal DNA double strand break (DSB) and coordinating the interplay between repair and checkpoint activation. Thus, PRMT5 has been actively studied as a cancer treatment target, and small molecule inhibitors of its enzymatic activity have already been developed. In this report, we analyzed all reported PRMT5 mutations appearing in cancer cells using data from the Catalogue of Somatic Mutations in Cancers (COSMIC). Our goal is to classify mutations as either drivers or passengers to understand which ones are likely to promote cellular transformation. Using gold standard artificial intelligence algorithms, we uncovered several key driver mutations in the active site of the enzyme (D306H, L315P, and N318K). In silico protein modeling shows that these mutations may affect the affinity of PRMT5 for S-adenosylmethionine (SAM), which is required as a methyl donor. Electrostatic analysis of the enzyme active site shows that one of these mutations creates a tunnel in the vicinity of the SAM binding site, which may allow interfering molecules to enter the enzyme active site and decrease its activity. We also identified several non-coding mutations that appear to affect PRMT5 splicing. Our analyses provide insights into the role of PRMT5 mutations in cancer cells. Additionally, since PRMT5 single molecule inhibitors have already been developed, this work may uncover future directions in how mutations can affect targeted inhibition.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Inteligência Artificial , Histonas/metabolismo , Neoplasias/genética , Mutação , Arginina/metabolismo
3.
Mol Pharmacol ; 97(6): 392-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234810

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the µ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the µ-opioid receptor most efficaciously because it has the ability to cross cell membranes.


Assuntos
Indazóis/química , Paroxetina/química , Pirimidinas/química , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Animais , Western Blotting , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Feminino , Células HEK293 , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/farmacologia
4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142932

RESUMO

Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Hepáticas/genética , Proteínas Supressoras de Tumor/genética , Sequência Conservada , Evolução Molecular , Proteínas Ativadoras de GTPase/química , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação , Transdução de Sinais , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
5.
Biochemistry ; 58(13): 1709-1717, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30830753

RESUMO

Lysosomal phospholipase A2 (LPLA2/PLA2G15) is a key enzyme involved in lipid homeostasis and is characterized by both phospholipase A2 and transacylase activity and by an acidic pH optimum. Divalent cations such as Ca2+ and Mg2+ have previously been shown to have little effect on the activity of LPLA2, but the discovery of a novel crystal form of LPLA2 with Zn2+ bound in the active site suggested a role for this divalent cation in regulating enzyme activity. In this complex, the cation directly coordinates the serine and histidine of the α/ß-hydrolase triad and stabilizes a closed conformation. This closed conformation is characterized by an inward shift of the lid loop, which extends over the active site and effectively blocks access to one of its lipid acyl chain binding tracks. Therefore, we hypothesized that Zn2+ would inhibit LPLA2 activity at a neutral but not acidic pH because histidine would be positively charged at lower pH. Indeed, Zn2+ was found to inhibit the esterase activity of LPLA2 in a noncompetitive manner exclusively at a neutral pH (between 6.5 and 8.0). Because lysosomes are reservoirs of Zn2+ in cells, the pH optimum of LPLA2 might allow it to catalyze acyl transfer unimpeded within the organelle. We conjecture that Zn2+ inhibition of LPLA2 at higher pH maintains a lower activity of the esterase in environments where its activity is not typically required.


Assuntos
Aciltransferases/metabolismo , Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Zinco/metabolismo , Aciltransferases/química , Animais , Sítios de Ligação , Domínio Catalítico , Estabilidade Enzimática , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fosfolipases A2/química , Ligação Proteica , Conformação Proteica
6.
Artigo em Inglês | MEDLINE | ID: mdl-30858202

RESUMO

The quinazolinones are a new class of antibacterials with in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA). The quinazolinones target cell wall biosynthesis and have a unique mechanism of action by binding to the allosteric site of penicillin-binding protein 2a (PBP 2a). We investigated the potential for synergism of a lead quinazolinone with several antibiotics of different classes using checkerboard and time-kill assays. The quinazolinone synergized with ß-lactam antibiotics. The combination of the quinazolinone with commercial piperacillin-tazobactam showed bactericidal synergy at sub-MICs of all three drugs. We demonstrated the efficacy of the triple-drug combination in a mouse MRSA neutropenic thigh infection model. The proposed mechanism for the synergistic activity in MRSA involves inhibition of the ß-lactamase by tazobactam, which protects piperacillin from hydrolysis, which can then inhibit its target, PBP 2. Furthermore, the quinazolinone binds to the allosteric site of PBP 2a, triggering the allosteric response. This leads to the opening of the active site, which, in turn, binds another molecule of piperacillin. In other words, PBP 2a, which is not normally inhibited by piperacillin, becomes vulnerable to inhibition in the presence of the quinazolinone. The collective effect is the impairment of cell wall biosynthesis, with bactericidal consequence. Two crystal structures for complexes of the antibiotics with PBP 2a provide support for the proposed mechanism of action.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Piperacilina/farmacologia , Quinazolinonas/farmacologia , Tazobactam/farmacologia , Antibacterianos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
7.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724779

RESUMO

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Assuntos
Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Acilação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Mutação , Fosfolipases A2/química , Fosfolipases A2/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
Bioorg Med Chem Lett ; 28(9): 1507-1515, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627263

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) regulate the desensitization and internalization of GPCRs. Two of these, GRK2 and GRK5, are upregulated in heart failure and are promising targets for heart failure treatment. Although there have been several reports of potent and selective inhibitors of GRK2 there are few for GRK5. Herein, we describe a ligand docking approach utilizing the crystal structures of the GRK2-Gßγ·GSK180736A and GRK5·CCG215022 complexes to search for amide substituents predicted to confer GRK2 and/or GRK5 potency and selectivity. From this campaign, we successfully generated two new potent GRK5 inhibitors, although neither exhibited selectivity over GRK2.


Assuntos
Amidas/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Amidas/síntese química , Amidas/química , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
9.
Mol Pharmacol ; 92(6): 707-717, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29070696

RESUMO

G protein-coupled receptor kinases (GRKs) phosphorylate activated receptors to promote arrestin binding, decoupling from heterotrimeric G proteins, and internalization. GRK2 and GRK5 are overexpressed in the failing heart and thus have become therapeutic targets. Previously, we discovered two classes of GRK2-selective inhibitors, one stemming from GSK180736A, a Rho-associated coiled-coil containing kinase 1 (ROCK1) inhibitor, the other from paroxetine, a selective serotonin-reuptake inhibitor. These two classes of compounds bind to the GRK2 active site in a similar configuration but contain different hinge-binding "warheads": indazole and benzodioxole, respectively. We surmised from our prior studies that an indazole would be the stronger hinge binder and would impart increased potency when substituted for benzodioxole in paroxetine derivatives. To test this hypothesis, we synthesized a series of hybrid compounds that allowed us to compare the effects of inhibitors that differ only in the identity of the warhead. The indazole-paroxetine analogs were indeed more potent than their respective benzodioxole derivatives but lost selectivity. To investigate how these two warheads dictate selectivity, we determined the crystal structures of three of the indazole hybrid compounds (CCG224061, CCG257284, and CCG258748) in complex with GRK2-Gßγ Comparison of these structures with those of analogous benzodioxole-containing complexes confirmed that the indazole-paroxetine hybrids form stronger interactions with the hinge of the kinase but also stabilize a distinct conformation of the kinase domain of GRK2 compared with previous complexes with paroxetine analogs. This conformation is analogous to one that can be assumed by GRK5, at least partially explaining the loss in selectivity.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/farmacologia , Indazóis/farmacologia , Paroxetina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Quinase 2 de Receptor Acoplado a Proteína G/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores Seletivos de Recaptação de Serotonina , Quinases Associadas a rho/metabolismo
10.
J Am Chem Soc ; 139(5): 2102-2110, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28099001

RESUMO

The mechanism of the ß-lactam antibacterials is the functionally irreversible acylation of the enzymes that catalyze the cross-linking steps in the biosynthesis of their peptidoglycan cell wall. The Gram-positive pathogen Staphylococcus aureus uses one primary resistance mechanism. An enzyme, called penicillin-binding protein 2a (PBP2a), is brought into this biosynthetic pathway to complete the cross-linking. PBP2a effectively discriminates against the ß-lactam antibiotics as potential inhibitors, and in favor of the peptidoglycan substrate. The basis for this discrimination is an allosteric site, distal from the active site, that when properly occupied concomitantly opens the gatekeeper residues within the active site and realigns the conformation of key residues to permit catalysis. We address the molecular basis of this regulation using crystallographic studies augmented by computational analyses. The crystal structures of three ß-lactams (oxacillin, cefepime, ceftazidime) complexes with PBP2a-each with the ß-lactam in the allosteric site-defined (with preceding PBP2a structures) as the "open" or "partially open" PBP2a states. A particular loop motion adjacent to the active site is identified as the driving force for the active-site conformational change that accompanies active-site opening. Correlation of this loop motion to effector binding at the allosteric site, in order to identify the signaling pathway, was accomplished computationally in reference to the known "closed" apo-PBP2a X-ray crystal structure state. This correlation enabled the computational simulation of the structures coinciding with initial peptidoglycan substrate binding to PBP2a, acyl enzyme formation, and acyl transfer to a second peptidoglycan substrate to attain cross-linking. These studies offer important insights into the structural bases for allosteric site-to-active site communication and for ß-lactam mimicry of the peptidoglycan substrates, as foundational to the mechanistic understanding of emerging PBP2a resistance mutations.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/química , Proteínas de Ligação às Penicilinas/metabolismo , Termodinâmica , Regulação Alostérica , Proteínas de Bactérias/química , Biocatálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Proteínas de Ligação às Penicilinas/química , Conformação Proteica
11.
Nat Chem Biol ; 11(11): 855-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26368589

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple ß-lactam combination meropenem-piperacillin-tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA subspecies N315 and 72 other clinical MRSA isolates in vitro and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents. We demonstrate that these activities also extend to other carbapenem-penicillin-ß-lactamase inhibitor combinations. ME/PI/TZ circumvents the tight regulation of the mec and bla operons in MRSA, the basis for inducible resistance to ß-lactam antibiotics. Furthermore, ME/PI/TZ subverts the function of penicillin-binding protein-2a (PBP2a) via allostery, which we propose as the mechanism for both synergy and collateral sensitivity. Showing in vivo activity similar to that of linezolid, ME/PI/TZ demonstrates that combinations of older ß-lactam antibiotics could be effective against MRSA infections in humans.


Assuntos
Antibacterianos/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Inibidores de beta-Lactamases/farmacologia , Regulação Alostérica , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Expressão Gênica , Humanos , Linezolida/farmacologia , Meropeném , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Óperon , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/farmacologia , Proteínas de Ligação às Penicilinas , Piperacilina/farmacologia , Infecções Estafilocócicas/microbiologia , Tazobactam , Tienamicinas/farmacologia , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
12.
J Am Chem Soc ; 137(5): 1738-41, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25629446

RESUMO

In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Quinazolinonas/farmacologia , Antibacterianos/farmacocinética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Testes de Sensibilidade Microbiana , Modelos Moleculares , Proteínas de Ligação às Penicilinas , Conformação Proteica , Quinazolinonas/farmacocinética , Staphylococcus/efeitos dos fármacos
13.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38828439

RESUMO

SLX4 is an interactor and activator of structure-specific exonuclease that helps resolve tangled recombination intermediates arising at stalled replication forks. It is one of the many factors that assist with homologous recombination, the major mechanism for restarting replication. SLX4 mutations have been reported in many cancers but a pan cancer map of all the mutations has not been undertaken. Here, using data from the Catalogue of Somatic Mutations in Cancers (COSMIC), we show that mutations occur in almost every cancer and many of them truncate the protein which should severely alter the function of the enzyme. We identified a frequent R1779W point mutation that occurs in the SLX4 domain required for heterodimerization with its partner, SLX1. In silico protein structure analysis of this mutation shows that it significantly alters the protein structure and is likely to destabilize the interaction with SLX1. Although this brief communication is limited to only in silico analysis, it identifies certain high frequency SLX4 mutations in human cancers that would warrant further in vivo studies. Additionally, these mutations may be potentially actionable for drug therapies.

14.
Mutat Res ; 829: 111866, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878505

RESUMO

Homologous recombination (HR) is essential for repair of DNA double-strand breaks (DSBs) and restart of stalled or collapsed replication forks. Most cancers are characterized by mutations in components of the DSB repair pathways. Redundant DSB repair pathways exist in eukaryotes from yeast to humans and recent evidence has shown that complete loss of HR function appears to be lethal. Recent evidence has also shown that cancer cells with mutations in one DSB repair pathway can be killed by inhibiting one or more parallel pathways, a strategy that is currently aggressively explored as a cancer therapy. KDM4B is a histone demethylase with pleiotropic functions, which participates in preparing DSBs for repair by contributing to chromatin remodeling. In this report we carried out a pan-cancer analysis of KDM4B mutations with the goal of understanding their distribution and interaction with other DSB genes. We find that although KDM4B mutations co-occur with DSB repair genes, most KDM4B mutations are not drivers or pathogenic. A sequence conservation analysis from yeast to humans shows that highly conserved residues are resistant to mutation. Finally, all mutations occur in a heterozygous state. A single mutation, R986L, was predicted to significantly affect protein structure using computational modeling. This analysis suggests that KDM4B makes contributions to DSB repair but is not a key player.

15.
PLoS One ; 19(2): e0299114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408048

RESUMO

Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias , Feminino , Humanos , Inteligência Artificial , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias/patologia , Genômica , Algoritmos , Mutação , Nucleotídeos , Claudinas/genética
16.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760409

RESUMO

Homologous recombination (HR) is the major mechanism of rescue of stalled replication forks or repair of DNA double-strand breaks (DSBs) during S phase or mitosis. In human cells, HR is facilitated by the BRCA2-BRCA1-PALB2 module, which loads the RAD51 recombinase onto a resected single-stranded DNA end to initiate repair. Although the process is essential for error-free repair, unrestrained HR can cause chromosomal rearrangements and genome instability. F-box DNA Helicase 1 (FBH1) antagonizes the role of BRCA2-BRCA1-PALB2 to restrict hyper-recombination and prevent genome instability. Here, we analyzed reported FBH1 mutations in cancer cells using the Catalogue of Somatic Mutations in Cancers (COSMIC) to understand how they interact with the BRCA2-BRCA1-PALB2. Consistent with previous results from yeast, we find that FBH1 mutations co-occur with BRCA2 mutations and to some degree BRCA1 and PALB2. We also describe some co-occurring mutations with RAD52, the accessory RAD51 loader and facilitator of single-strand annealing, which is independent of RAD51. In silico modeling was used to investigate the role of key FBH1 mutations on protein function, and a Q650K mutation was found to destabilize the protein structure. Taken together, this work highlights how mutations in several DNA damage repair genes contribute to cellular transformation and immortalization.

17.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36530474

RESUMO

Cancer cells are characterized by accumulation of mutations due to improperly repaired DNA damage. The DNA double strand break is one of the most severe form of damage and several redundant mechanisms have evolved to facilitate accurate repair. During DNA replication and in mitosis, breaks are primarily repaired by homologous recombination which is facilitated by several genes. Key to this process is the breast cancer susceptibility genes BRCA1 and BRCA2 as well as the accessory RAD52 gene. Proper chromatin remodeling is also essential for repair and the KAT5 histone acetyltransferase facilitates histone removal at the break. Here we undertook a pan cancer analysis to investigate mutations within the KAT5 gene in cancer cells. We employed two standard artificial algorithms to classify mutations as either driver (CHASMPlus algorithm) or pathogenic (VEST4 algorithm). We find that most predicted driver and disease-causing mutations occur in the catalytic site or within key regulatory domains. In silico analysis of protein structure using AlphaFold shows that these mutations are likely to destabilize the function of KAT5 or interactions with DNA or its other partners. The data presented here, although preliminary, could be used to inform clinical strategies.

18.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36247322

RESUMO

SLC6A4 is a serotonin re-uptake transporter which has been a target for anti-depressant therapies but recently some mutations have been described in cancer cells. Here, we characterize mutations in SLC6A4 that appear in cancer cells. We employed several validated computational and artificial intelligence algorithms to characterize the mutations. We identified a previously uncharacterized G100V mutation in lung cancers. In sillico structural analysis reveals that this mutation may affect SLC6A4 ligand binding and subsequently its function. We also identified several other mutations that may affect the structure of the protein. This preliminary analysis highlights the role of SLC6A4 in human cancers.

19.
PLoS One ; 17(9): e0273736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107942

RESUMO

In human cells homologous recombination (HR) is critical for repair of DNA double strand breaks (DSBs) and rescue of stalled or collapsed replication forks. HR is facilitated by RAD51 which is loaded onto DNA by either BRCA2-BRCA1-PALB2 or RAD52. In human culture cells, double-knockdowns of RAD52 and genes in the BRCA1-BRCA2-PALB2 axis are lethal. Mutations in BRCA2, BRCA1 or PALB2 significantly impairs error free HR as RAD51 loading relies on RAD52 which is not as proficient as BRCA2-BRCA1-PALB2. RAD52 also facilitates Single Strand Annealing (SSA) that produces intra-chromosomal deletions. Some RAD52 mutations that affect the SSA function or decrease RAD52 association with DNA can suppress certain BRCA2 associated phenotypes in breast cancers. In this report we did a pan-cancer analysis using data reported on the Catalogue of Somatic Mutations in Cancers (COSMIC) to identify double mutants between RAD52 and BRCA1, BRCA2 or PALB2 that occur in cancer cells. We find that co-occurring mutations are likely in certain cancer tissues but not others. However, all mutations occur in a heterozygous state. Further, using computational and machine learning tools we identified only a handful of pathogenic or driver mutations predicted to significantly affect the function of the proteins. This supports previous findings that co-inactivation of RAD52 with any members of the BRCA2-BRCA1-PALB2 axis is lethal. Molecular modeling also revealed that pathogenic RAD52 mutations co-occurring with mutations in BRCA2-BRCA1-PALB2 axis are either expected to attenuate its SSA function or its interaction with DNA. This study extends previous breast cancer findings to other cancer types and shows that co-occurring mutations likely destabilize HR by similar mechanisms as in breast cancers.


Assuntos
Neoplasias da Mama , Genes BRCA2 , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Humanos , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética
20.
Bioorg Med Chem Lett ; 21(9): 2675-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21256011

RESUMO

The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures.


Assuntos
Boratos/química , Cobre/química , Inibidores Enzimáticos/síntese química , Hidrocarbonetos Fluorados/química , Inibidores de Metaloproteinases de Matriz , Sulfetos , Inibidores Enzimáticos/química , Estrutura Molecular , Sulfetos/síntese química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa