Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(18): 1576-1586, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516839

RESUMO

Lead-free double perovskites are unique materials for transport and optoelectronic applications that use clean resources to generate energy. Using first-principle computations, this study thoroughly investigates the structural, thermoelectric, and optical attributes of A2TlAgF6 (A = Rb, Cs). Tolerance factor and formation energy estimates are used to verify that these materials exist in the cubic phase. Elastic constants with high melting temperature values are ductile when evaluated for mechanical stability using the Born stability criterion. The optical absorption band is adjusted from 2 to 4 eV via band gaps of 1.88 and 1.99 eV, as indicated by band structures. Analysis of optical properties reveals perfect absorption in the visible spectrum, whole polarization, and low optical loss. Furthermore, thermoelectric properties are assessed at 300, 500, and 700 K in the range of -0.5 to 3 eV for chemical potential (µ). The materials exhibit significant improvements in the Figure of Merit scale due to their elevated electrical conductivity, Seebeck coefficient, and extremely low thermal conductivity values.

2.
J Comput Chem ; 44(32): 2442-2452, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37605480

RESUMO

The double perovskites are become the emerging aspirant to fulfill the demand of energy. Therefore, the optoelectronic, elastic and transport characteristics of Ba2 XMoO6 (X = Zn, Cd) are addressed systemically. The elastic constants show the mechanical stability. The nature of Ba2 ZnMoO6 is brittle and Ba2 CdMoO6 is ductile with large values of Debye temperature covalent bonding. The electronic band structures exhibit band gaps of 2.81 and 2.98 eV, which increase their importance for optoelectronic applications. The absorption of light energy, optical loss, refractive index, polarization of light energy are addressed in the energy range zero to 14 eV. Furthermore, thermoelectric characteristics are computed against chemical potentials at 300, 600, and 900 K. The chemical potential decides the p-type nature, with holes as majority carriers. The increasing temperature increases the power factor and figure of merit. Therefore, the optoelectronic and thermoelectric characteristics reveals the importance of studied DPs for energy applications.

3.
J Comput Chem ; 44(19): 1690-1703, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093704

RESUMO

In this study, structural, electronic, optical, thermoelectric, and thermodynamics properties of vacancy-ordered double perovskites Rb2 XCl6 (X = Se, Ti) were explored theoretically. The results revealed that Rb2SeCl6 and Rb2 TiCl6 are indirect band gap (Eg ) semiconductors with Eg values of 2.95 eV, and 2.84 eV respectively. The calculated properties (phonons, elastic constant, Poisson's ratio, and Pugh's ratio) revealed that both materials are dynamically and chemically stable and can exhibit brittle (Rb2 SeCl6 ) and ductile (Rb2 TiCl6 ) nature. From the analysis of optical parameters, it was noticed that the refractive index of the materials has a value of 1.5-2.0 where light absorption was found from the visible to the ultraviolet region. The thermoelectric properties determined by using the BoltzTrap code demonstrated that at room temperature, the Figure of merit (ZT) was found to be 0.74 and 0.76 for Rb2 SeCl6 and Rb2 TiCl6 , respectively. Despite a moderate value of ZT in such materials, further studies might explore effective methods for tuning the electronic band gap and improving the thermoelectric response of the material for practical energy production applications.


Assuntos
Compostos Inorgânicos , Titânio , Compostos de Cálcio , Óxidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa