Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941532

RESUMO

Both metalloporphyrins and heterometallic {Cr7Ni} rings are of significant research interest due to their proposed roles in quantum information processing devices. In this study, we present a series of complexes in which [Cr7NiF3(Etglu)(O2CtBu)15] (N-EtgluH5 = N-ethyl-d-glucamine) heterometallic rings are coordinated to metalloporphyrin linkers: the symmetric [M(TPyP)] for M = Cu2+, VO2+, and H2TPyP = 5,10,15,20-tetra(4-pyridyl)porphyrin; and the asymmetric [{VO}(TrPPyP)] for H2(TrPPyP) = 5,10,15-(triphenyl)-20-(4-pyridyl)porphyrin. The magnetic interactions present in these complexes are unraveled using the continuous wave (CW) electron paramagnetic resonance (EPR) technique. The nature of the coupling between the {Cr7Ni} rings and the central metalloporphyrin is assessed by numerical simulations of CW EPR spectra and determined to be on the order of 0.01 cm-1, larger than the dipolar ones and suitable for individual spin addressability in multiqubit architectures.

2.
Phys Chem Chem Phys ; 26(3): 2589-2602, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170870

RESUMO

We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.

3.
J Am Chem Soc ; 145(1): 455-464, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546690

RESUMO

A supramolecular chiral hydrogen-bonded tetrameric aggregate possessing a large cavity and tetraarylporphyrin substituents was assembled using alternating 4H- and 2H-bonds between ureidopyrimidinone and isocytosine units, respectively. The aggregation mode was rationally shifted from social to narcissistic self-sorting by changing urea substituent size only. The H-bonded tetramer forms a strong complex with C60 guest, at the same time undergoing remarkable structural changes. Namely, the cavity adjusts to the guest via keto-to-enol tautomerization of the ureidopyrimidinone unit and as a result, porphyrin substituents move apart from each other in a scissor blade-like opening fashion. The rearrangement is accompanied by C-H···π interaction between the alkyl solubilizing groups and the nearby placed porphyrin π-systems. The latter interaction was found to be crucial for the guest complexation event, providing energetic compensation for otherwise costly tautomerization. We showed that only the systems possessing sufficiently long alkyl chains capable of interacting with a porphyrin ring are able to form a complex with C60. The structural rearrangement of the tetramer was quantitatively characterized by electron paramagnetic resonance pulsed dipolar spectroscopy measurements using photogenerated triplets of porphyrin and C60 as spin probes. Further exploring the C-H···π interaction as a decisive element for the C60 recognition, we investigated the guest-induced self-sorting phenomenon using scrambled tetramer assemblies composed of two types of monomers possessing alkyl chains of different lengths. The presence of the fullerene guest has enabled the selective scavenging of monomers capable of C-H···π interaction to form homo-tetrameric aggregates.


Assuntos
Fulerenos , Porfirinas , Porfirinas/química , Fulerenos/química , Espectroscopia de Ressonância Magnética , Ligação de Hidrogênio , Hidrogênio
4.
J Am Chem Soc ; 145(42): 22859-22865, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37839071

RESUMO

To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.

5.
Chemistry ; 29(71): e202302497, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37733973

RESUMO

Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.

6.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364348

RESUMO

We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.


Assuntos
Eritrosina , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Temperatura
7.
Angew Chem Int Ed Engl ; 61(45): e202207947, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222278

RESUMO

Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin 1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.


Assuntos
Elétrons , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Conformação Molecular
8.
Eur J Inorg Chem ; 2021(14): 1397-1404, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248415

RESUMO

Reaction between the platinum(IV) azido complex trans,trans,trans-[Pt(py)2(N3)2(OH)2] (1) and 1,4-diphenyl-2-butyne-1,4-dione 2 in MeCN produces the intermediate peroxide-bridged dimeric platinum(IV) azido triazolato species (5), which has been characterised by X-ray crystallography. However, if the reaction between 1 and 2 is conducted in MeOH it results in decomposition. Over time in MeCN, dimer (5) converts into mononuclear complexes trans,trans,trans-[Pt(py)2(N3)(triazole)(OH)2] (3 a/3 b), which are in dynamic exchange. If resuspended in protic solvents (MeOH,H2O), 3 a/3 b undergo a slow (22 d) irreversible rearrangement to a cyclised platinum(IV) species 4 which contains a formally N,O-chelated ligand. Conversion of 3 a/3 b to 4 in d 4-MeOH can be accelerated (384x) by irradiation with visible light, although continued irradiation also produces N3 . and OH. radicals, and the [4-N3]+ species can be readily detected by ESI-MS. Solvent choice significantly effects both the cycloaddition reaction between 1 and 2, and the stability of the resultant complexes.

9.
Proteins ; 88(1): 82-93, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294851

RESUMO

The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E'F' sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1 HN and 15 N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.


Assuntos
Bacteriófago lambda/enzimologia , Muramidase/antagonistas & inibidores , Muramidase/metabolismo , Oligossacarídeos/metabolismo , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/química , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos
10.
J Am Chem Soc ; 142(37): 15941-15949, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820906

RESUMO

The synthesis, structures, and properties of [4]- and [3]-rotaxane complexes are reported where [2]-rotaxanes, formed from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by single-crystal X-ray diffraction and have the formulas [CrNi2(F)(O2CtBu)6]{(BH)[Cr7NiF8(O2CtBu)16]}3 (3) and [CrNi2(F)(O2CtBu)6(THF)]{(BH)[Cr7NiF8(O2CtBu)16]}2 (4), where B = py-CH2CH2NHCH2C6H4SCH3. The [4]-rotaxane 3 is an isosceles triangle of three [2]-rotaxanes bound to the central triangle while the [3]-rotaxane 4 contains only two [2]-rotaxanes bound to the central triangle. Studies of the behavior of 3 and 4 in solution by small-angle X-ray scattering and atomistic molecular dynamic simulations show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation to the crystal. Continuous wave and pulsed electron paramagnetic resonance spectroscopy was used to study the structures present and demonstrate that in frozen solutions (at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations.

11.
Chemphyschem ; 20(7): 931-935, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817078

RESUMO

Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.


Assuntos
Neuroglobina/química , Óxidos N-Cíclicos/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Luz , Mesilatos/química , Estrutura Molecular , Mutação , Neuroglobina/genética , Protoporfirinas/química , Protoporfirinas/efeitos da radiação , Marcadores de Spin
12.
J Am Chem Soc ; 140(7): 2514-2527, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29266939

RESUMO

Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

13.
Phys Chem Chem Phys ; 18(8): 5981-94, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26837391

RESUMO

Orientation-selective DEER (Double Electron-Electron Resonance) measurements were conducted on a series of rigid and flexible molecules containing Cu(ii) ions. A system with two rigidly held Cu(ii) ions was afforded by the protein homo-dimer of copper amine oxidase from Arthrobacter globiformis. This system provided experimental DEER data between two Cu(ii) ions with a well-defined distance and relative orientation to assess the accuracy of the methodology. Evaluation of orientation-selective DEER (os DEER) on systems with limited flexibility was probed using a series of porphyrin-based Cu(ii)-nitroxide and Cu(ii)-Cu(ii) model systems of well-defined lengths synthesized for this project. Density functional theory was employed to generate molecular models of the conformers for each porphyrin-based Cu(ii) dimer studied. Excellent agreement was found between DEER traces simulated using these computed conformers and the experimental data. The performance of different parameterised structural models in simulating the experimental DEER data was also investigated. The results of this analysis demonstrate the degree to which the DEER data define the relative orientation of the two Cu(ii) ions and highlight the need to choose a parameterised model that captures the essential features of the flexibility (rotational freedom) of the system being studied.


Assuntos
Complexos de Coordenação/química , Cobre/química , Modelos Moleculares , Porfirinas/química , Amina Oxidase (contendo Cobre)/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Estrutura Molecular
14.
Chem Commun (Camb) ; 60(8): 1012-1015, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38170515

RESUMO

Illumination into an electron paramagnetic resonance (EPR) spectrometer is commonly carried out through the optical window, perpendicular to the sample and magnetic field. Here we show that significant improvements can be obtained by using the walls of the EPR tube as a light guide, with the light scattered only around the sample-containing area.

15.
Chembiochem ; 14(14): 1780-8, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23801644

RESUMO

(15) N NMR relaxation studies, analyses of NMR data to include chemical shifts, residual dipolar couplings (RDC), NOEs and H(N) -H(α) coupling constants, and molecular dynamics (MD) simulations have been used to characterise the behaviour of lysozyme from bacteriophage lambda (λ lysozyme) in solution. The lower and upper lip regions in λ lysozyme (residues 51-60 and 128-141, respectively) show reduced (1) H-(15) N order parameters indicating mobility on a picosecond timescale. In addition, residues in the lower and upper lips also show exchange contributions to T2 indicative of slower timescale motions. The chemical shift, RDC, coupling constant and NOE data for λ lysozyme indicate that two fluctuating ß-strands (ß3 and ß4) are populated in the lower lip region while the N terminus of helix α6 (residues 136-139) forms dynamic helical turns in the upper lip region. This behaviour is confirmed by MD simulations that show hydrogen bonds, indicative of the ß-sheet and helical secondary structure in the lip regions, with populations of 40-60 %. Thus in solution λ lysozyme adopts a conformational ensemble that will contain both the open and closed forms observed in the crystal structures of the protein.


Assuntos
Bacteriófago lambda/enzimologia , Simulação de Dinâmica Molecular , Muramidase/química , Ressonância Magnética Nuclear Biomolecular , Cristalografia por Raios X , Ligação de Hidrogênio , Muramidase/metabolismo , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Soluções/química , Especificidade por Substrato
16.
Nat Commun ; 14(1): 7029, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919283

RESUMO

Quantum information processing promises to revolutionise computing; quantum algorithms have been discovered that address common tasks significantly more efficiently than their classical counterparts. For a physical system to be a viable quantum computer it must be possible to initialise its quantum state, to realise a set of universal quantum logic gates, including at least one multi-qubit gate, and to make measurements of qubit states. Molecular Electron Spin Qubits (MESQs) have been proposed to fulfil these criteria, as their bottom-up synthesis should facilitate tuning properties as desired and the reproducible production of multi-MESQ structures. Here we explore how to perform a two-qubit entangling gate on a multi-MESQ system, and how to readout the state via quantum state tomography. We propose methods of accomplishing both procedures using multifrequency pulse Electron Paramagnetic Resonance (EPR) and apply them to a model MESQ structure consisting of two nitroxide spin centres. Our results confirm the methodological principles and shed light on the experimental hurdles which must be overcome to realise a demonstration of controlled entanglement on this system.

17.
J Magn Reson ; 351: 107447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119743

RESUMO

Half-Integer High Spin (HIHS) systems with zero-field splitting (ZFS) parameters below 1 GHz are generally dominated by the spin |─1/2>→|+1/2 > central transition (CT). Accordingly, most pulsed Electron Paramagnetic Resonance (EPR) experiments are performed at this position for maximum sensitivity. However, in certain cases it can be desirable to detect higher spin transitions away from the CT in such systems. Here, we describe the use of frequency swept Wideband, Uniform Rate, Smooth Truncation (WURST) pulses for transferring spin population from the CT, and other transitions, of Gd(III) to the neighbouring higher spin transition |─3/2>→|─1/2 > at Q- and W-band frequencies. Specifically, we demonstrate this approach to enhance the sensitivity of 1H Mims Electron-Nuclear Double Resonance (ENDOR) measurements on two model Gd(III) aryl substituted 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) complexes, focusing on transitions other than the CT. We show that an enhancement factor greater than 2 is obtained for both complexes at Q- and W-band frequencies by the application of two polarising pulses prior to the ENDOR sequence. This is in agreement with simulations of the spin dynamics of the system during WURST pulse excitation. The technique demonstrated here should allow more sensitive experiments to be measured away from the CT at higher operating temperatures, and be combined with any relevant pulse sequence.

18.
Phys Chem Chem Phys ; 14(18): 6526-37, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22460919

RESUMO

Palustrisredoxin-B (PuxB) from Rhodopseudomonas palustris (CGA009) is a [2Fe-2S] ferredoxin which is able to accept electrons from NADH via the flavin-dependent palustrisredoxin reductase (PuR); these electrons can then be transferred to the P450 enzyme (CYP199A2). This work reports on the paramagnetic state of the [2Fe-2S](+) cluster in PuxB, both alone and in the PuR-PuxB complex. Aided by the X-ray crystal structure of PuxB, the protons nearest to the reduced [2Fe-2S](+) cluster were used as magnetic probes to quantify the g-matrix orientation and anisotropic magnetic moment of the paramagnetic centre. (1)H hyperfine couplings were measured with W-band Davies ENDOR and X-band HYSCORE spectroscopy and fitted to a model in which (1)H dipolar couplings were calculated assuming point magnetic moments located at the Fe ions, and bridging and coordinating cysteine sulfur atoms. The absolute sign of a (1)H hyperfine coupling was measured using a variable mixing time ENDOR experiment to confirm the assignment of the Fe(3+) and Fe(2+) ions. For the anti-ferromagnetically coupled cluster the magnetic moment is described in terms of spin projection factors, and our analysis yields values of K(exp)(A) = +2.33 to +1.85 (ferric site), and K(exp)(B) = -1.33 to -0.85 (ferrous site). These values are discussed in terms of the delocalisation of the spin density and hence the limitations of applying a local site spin coupling model to calculate the spin projection factors in a complex with considerable overlap of the α- and ß-spin magnetic oribitals. The accurate description of the g-matrix orientation and magnetic moment of this [2Fe-2S](+) cluster enable it to be utilised as a paramagnetic spin probe, for example, to measure electron-electron distances. In the pdb reference frame of PuxB (code ) the g(∥) axis vector is g(∥) = [-0.6524 ± 0.0248, -0.6269 ± 0.0115, 0.4259 ± 0.0405], with the principal g-values of g(⊥) = 1.9328 ± 0.0003, g(∥) = 2.0233 ± 0.0003.


Assuntos
Ferredoxinas/química , Ferro/química , Fenômenos Magnéticos , Rodopseudomonas , Enxofre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Proteica
19.
Methods Enzymol ; 666: 171-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465920

RESUMO

Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.


Assuntos
Luz , Proteínas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lasers , Proteínas/química , Marcadores de Spin
20.
ACS Omega ; 7(45): 41783-41788, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406523

RESUMO

ELDOR-detected nuclear magnetic resonance (EDNMR) spectral simulations combined with broken-symmetry density functional theory (BS-DFT) calculations are used to obtain and to assign the 55Mn hyperfine coupling constants (hfcs) for modified forms of the water oxidizing complex in the penultimate S3 state of the water oxidation cycle. The study shows that an open cubane form of the core Mn4CaO6 cluster explains the magnetic properties of the dominant S = 3 species in all cases studied experimentally with no need to invoke a closed cubane intermediate possessing a distorted pentacoordinate Mn4 ion as recently suggested. EDNMR simulations found that both the experimental bandwidth and multinuclear transitions may alter relative EDNMR peak intensities, potentially leading to incorrect assignment of hfcs. The implications of these findings for the water oxidation mechanism are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa