Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 66(2): 130-146, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593361

RESUMO

Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

4.
Carbon Balance Manag ; 18(1): 14, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460773

RESUMO

Greenhouse gas (GHG) accounting of emissions from land use, land-use change, and forestry necessarily involves consideration of landscape fire. This is of particular importance for Australia given that natural and human fire is a common occurrence, and many ecosystems are adapted to fire, and require periodic burning for plant regeneration and ecological health. Landscape fire takes many forms, can be started by humans or by lightning, and can be managed or uncontrolled. We briefly review the underlying logic of greenhouse gas accounting involving landscape fire in the 2020 Australian Government GHG inventory report. The treatment of wildfire that Australia chooses to enact under the internationally agreed guidelines is based on two core assumptions (a) that effects of natural and anthropogenic fire in Australian vegetation carbon stocks are transient and they return to the pre-fire level relatively quickly, and (b) that historically and geographically anomalous wildfires in forests should be excluded from national anthropogenic emission estimates because they are beyond human control. It is now widely accepted that anthropogenic climate change is contributing to increased frequency and severity of forest fires in Australia, therefore challenging assumptions about the human agency in fire-related GHG emissions and carbon balance. Currently, the national inventory focuses on forest fires; we suggest national greenhouse gas accounting needs to provide a more detailed reporting of vegetation fires including: (a) more detailed mapping of fire severity patterns; (b) more comprehensive emission factors; (c) better growth and recovery models from different vegetation types; (d) improved understanding how fires of different severities affect carbon stocks; and (e) improved analysis of the human agency behind the causes of emissions, including ignition types and fire-weather conditions. This more comprehensive accounting of carbon emissions would provide greater incentives to improve fire management practices that reduce the frequency, severity, and extent of uncontrolled landscape fires.

5.
Pest Manag Sci ; 68(5): 709-17, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22076747

RESUMO

BACKGROUND: Microbial and insect-growth-regulator larvicides dominate current vector control programmes because they reduce larval abundance and are relatively environmentally benign. However, their short persistence makes them expensive, and environmental manipulation of larval habitat might be an alternative control measure. Aedes vigilax is a major vector species in northern Australia. A field experiment was implemented in Darwin, Australia, to test the hypotheses that (1) aerial microbial larvicide application effectively decreases Ae. vigilax larval presence, and therefore adult emergence, and (2) environmental manipulation is an effective alternative control measure. Generalised linear and mixed-effects modelling and information-theoretic comparisons were used to test these hypotheses. RESULTS: It is shown that the current aerial larvicide application campaign is effective at suppressing the emergence of Ae. vigilax, whereas vegetation removal is not as effective in this context. In addition, the results indicate that current larval sampling procedures are inadequate for quantifying larval abundance or adult emergence. CONCLUSIONS: This field-based comparison has shown that the existing larviciding campaign is more effective than a simple environmental management strategy for mosquito control. It has also identified an important knowledge gap in the use of larval sampling to evaluate the effectiveness of vector control strategies.


Assuntos
Aedes/efeitos dos fármacos , Ecossistema , Insetos Vetores/efeitos dos fármacos , Inseticidas/toxicidade , Controle de Mosquitos/métodos , Aedes/crescimento & desenvolvimento , Animais , Austrália , Feminino , Insetos Vetores/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa