RESUMO
Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich "veils" descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface-dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.
RESUMO
Material fluxes at the land-ocean interface impact seawater composition and global cycling of elements. However, most attention has been focused on the fluvial dissolved fluxes. For elements like lead (Pb), whose fluvial particulate flux into the ocean is two orders of magnitude higher than the dissolved counterpart, the role of particulates in elemental cycling is potentially important but currently less appreciated. Using both chemical analyses on samples collected from around equatorial Southeast Asia and model simulations, we show that particulate-dissolved exchange is an important mechanism controlling the concentration and isotopic composition of dissolved Pb in the ocean. Our model indicates that Pb contributed from particulate-dissolved exchange at ocean boundaries is larger than, or at least comparable to, other major Pb sources to the seawater before the Anthropocene, when the anthropogenic Pb was absent. Our work highlights the importance of boundary exchange in understanding marine element cycling and weathering-climate feedback.
RESUMO
Changes in chromium (Cr) isotope ratios due to fractionation between trivalent [Cr(III)] and hexavalent [Cr(VI)] are being utilized by geologists to infer oxygen conditions in past environments. However, there is little information available on Cr in the modern ocean to ground-truth these inferences. Transformations between the two chromium species are important processes in oceanic Cr cycling. Here we present profiles of hexavalent and trivalent Cr concentrations and stable isotope ratios from the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) which support theoretical and experimental studies that predict that lighter Cr is preferentially reduced in low-oxygen environments and that residual dissolved Cr becomes heavier due to removal of particle-reactive Cr(III) on sinking particles. The Cr(III) maximum dominantly occurs in the upper portion of the ODZ, implying that microbial activity (dependent on the sinking flux of organic matter) may be the dominant mechanism for this transformation, rather than a simple inorganic chemical conversion between the species depending on the redox potential.
RESUMO
Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 µm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0-1.5 nmol/kg near 2,000 m depth (0.4-0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial (3)He and dissolved Mn (dFe:(3)He of 0.9-2.7 × 10(6)). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 µm) and colloidal (0.02-0.4 µm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02-1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input).
RESUMO
Humans have injected lead (Pb) massively into the earth surface environment in a temporally and spatially evolving pattern. A significant fraction is transported by the atmosphere into the surface ocean where we can observe its transport by ocean currents and sinking particles. This study of the Indian Ocean documents high Pb concentrations in the northern and tropical surface waters and extremely low Pb levels in the deep water. North of 20°S, dissolved Pb concentrations decrease from 42 to 82 pmol/kg in surface waters to 1.5-3.3 pmol/kg in deep waters. South of 20°S, surface water Pb concentrations decrease from 21 pmol/kg at 31°S to 7 pmol/kg at 62°S. This surface Pb concentration gradient reflects a southward decrease in anthropogenic Pb emissions. The upper waters of the north and central Indian Ocean have high Pb concentrations resulting from recent regional rapid industrialization and a late phase-out of leaded gasoline, and these concentrations are now higher than currently seen in the central North Pacific and North Atlantic oceans. The Antarctic sector of the Indian Ocean shows very low concentrations due to limited regional anthropogenic Pb emissions, high scavenging rates, and rapid vertical mixing, but Pb still occurs at higher levels than would have existed centuries ago. Penetration of Pb into the northern and central Indian Ocean thermocline waters is minimized by limited ventilation. Pb concentrations in the deep Indian Ocean are comparable to the other oceans at the same latitude, and deep waters of the central Indian Ocean match the lowest observed oceanic Pb concentrations.
Assuntos
Chumbo/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Geografia , Oceano Índico , Água do Mar/químicaRESUMO
The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.
Assuntos
Evolução Biológica , Extinção Biológica , Sedimentos Geológicos/química , Redes e Vias Metabólicas/fisiologia , Metano/biossíntese , Methanosarcina/genética , Erupções Vulcânicas/história , Ciclo do Carbono/fisiologia , Isótopos de Carbono/análise , China , História Antiga , Methanosarcina/fisiologia , Níquel/análise , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Erupções Vulcânicas/efeitos adversosRESUMO
Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
RESUMO
Organic ligands dominate the speciation of iron in the ocean. Little is known, however, about the chemical composition and distribution of these compounds. Here, we describe a method to detect low concentrations of organic Fe ligands using reverse-phase high-performance liquid chromatography (HPLC) tandem multicollector inductively coupled plasma mass spectrometry. This technique can be used to screen seawater and marine cultures for target compounds that can be isolated and structurally characterized. Sensitive detection (<1 picomole Fe) is achieved using an iron-free HPLC system to reduce background Fe levels, minimizing (40)Ar(16)O(+) interferences on (56)Fe with a hexapole collision cell, and introducing oxygen into the sample carrier gas to prevent the formation of reduced carbon deposits that decrease sensitivity. This method was tested with a chromatographic separation of five trace metal complexes that represent the polarity range likely found in seawater. Good separation was achieved with a 20 min water/methanol gradient, although sensitivity decreased by a factor of 2 at high organic solvent concentrations. Finally, Fe ligand complexes were detected from the organic extract of surface South Pacific seawater and from culture media of the siderophore producing cyanobacteria Synechococcus sp. PCC 7002.
Assuntos
Compostos Férricos/análise , Água do Mar/química , Synechococcus/química , Cromatografia Líquida de Alta Pressão , Ligantes , Espectrometria de Massas , Espectrofotometria Atômica , Synechococcus/crescimento & desenvolvimentoRESUMO
Anthropogenic lead (Pb) has been the overwhelming Pb source to the global ocean, primarily contributed from Pb gasoline and industrial emissions. However, since Pb gasoline has been phased out globally, questions about whether there was a decrease in seawater Pb concentration, or if there are other sources taking over remains unclear in Southeast Asia. Here, combining Pb concentrations in seawater from Singapore Strait in 2010-2017; trap sediment in 2018-2019; and the previously published coral reconstruction covering 1975-2010; we found that the seawater Pb concentration in Singapore Strait over past decades followed the regional gasoline emissions, and no additional major source had contributed the Pb in the seawater since ~2010. The present-day Pb in Singapore Straits' water mainly follows the monsoonal current reversals, with variable degrees of scavenging that peak in inter-monsoon season. Minor Pb sources still contribute to some local-scale variabilities, despite a decadal-scale decreasing trend of Pb in seawater.
Assuntos
Gasolina , Chumbo , Monitoramento Ambiental , Água do Mar , SingapuraRESUMO
The environmental impacts of the urban expansion in Rio de Janeiro was evaluated based on the historical accumulation of black carbon (BC), aliphatic (AHs) and aromatic hydrocarbons (PAHs) and sterols in a sediment core retrieved from Botafogo Cove. BC related to oil combustion sources increased significantly since the 1990s. AHs were associated with petroleum inputs and revealed a high level of contamination. Multivariate statistical methods (a Principal Component Analysis associated with a linear multiple regression - PCA/LMR) applied to PAHs suggests changes in the sources in recent years. This can be ascribed to a reduction in pyrogenic emissions over the last four decades and to an increase in petrogenic inputs since the 1990s. The sterol dinosterol registered the increased eutrophication over the last three decades, but the sewage marker coprostanol was present at relatively low concentrations (0.40 to 1.16⯵gâ¯g-1) probably caused by enhanced bacterial activity in the sediment.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos/química , Esgotos/química , Poluentes Químicos da Água/análise , Baías/química , Brasil , Cidades , Petróleo/análise , Esteróis/análiseRESUMO
Pb is a trace metal that tracks anthropogenic pollution in natural environments. Despite recent leaded petrol phase out around Southeast Asia, the region's growth has resulted in continued exposure of Pb from a variety of sources. In this study, sources of Pb into Singapore, a highly urbanised city-state situated in the central axis of Southeast Asia, are investigated using isotopic ratios and concentrations. We compiled data from our previous analyses of aerosols, incineration fly ash and sediments, with new data from analyses of soil from gas stations, water from runoff and round-island coastal seawater to obtain a spatio-temporal overview of sources of Pb into the Singapore environment. Using 206Pb/207Pb ratio, we identified three main Pb source origins: natural Pb (1.215 ± 0.001), historic/remnant leaded petrol (1.123 ± 0.013), and present-day industrial and incinerated waste (1.148 ± 0.005). Deep reservoir sediments bore larger traces of Pb from leaded petrol, but present-day runoff waters and coastal seawater were a mix of industrial and natural sources with somewhat variable concentrations. We found temporal variability in Pb isotopic ratio in aerosols indicating alternating transboundary Pb sources to Singapore that correspond to seasonal changes in monsoon winds. By contrast, seasonal monsoon circulation did not significantly influence isotopic ratios of coastal seawater Pb. Instead, seawater Pb was driven more by location differences, suggesting stronger local-scale drivers of Pb such as point sources, water flushing, and isotope exchange. The combination of multiple historic and current sources of Pb shown in this study highlights the need for continued monitoring of Pb in Southeast Asia, especially in light of emerging industries and potential large sources of Pb such as coal combustion.
Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Chumbo/análise , Aerossóis/análise , Cidades , Carvão Mineral/análise , Meio Ambiente , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Sedimentos Geológicos , Incineração , Isótopos/análise , Singapura , Solo , UrbanizaçãoRESUMO
Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of â¼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is â¼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century.
Assuntos
Monitoramento Ambiental , Poluição Ambiental/análise , Sedimentos Geológicos/análise , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise , Cidades , Isótopos/análise , Lagos/química , Singapura , Solo/química , Oligoelementos/análiseRESUMO
Surficial sediment samples were collected from 25 locations within Kuwait Bay and outside the Bay, in the Northwestern Arabian Gulf, to access recent polycyclic aromatic hydrocarbon pollution in Kuwait. Time trends in the depositional history of PAHs to this portion of the Arabian Gulf was reconstructed from the analysis of a dated sediment core. Intersite differences in concentration exist although these differences were not statistically significant (p=0.08). However, organic carbon normalized concentrations within Kuwait Bay were 4 times higher than the average concentrations outside the Bay and were shown to be statistically significant (p<0.001). The sedimentary record showed that ΣPAHs concentration fluctuated between 12 and 25ngg-1 before 1970. Concentrations then increased sharply to a maximum of 45ngg-1 around the late 1970s and early 1980s followed by an exponential decrease in concentration to pre-1970 "background" concentrations of between 12 and 25ngg-1.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Baías , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Kuweit , Análise Espaço-TemporalRESUMO
The temporal evolution of atmospheric lead deposition and its possible sources were assessed in eastern Canada and in western Scotland, using blanket peat bogs as geochemical archives. Short cores were taken from two remote sites located close to the sea. Significant lead enrichments in the upper layers at both sites reflect the increasing emission of lead into the atmosphere due to anthropogenic activities during the last century. At the Scottish site, a region under aeolian influence from Europe, anthropogenic derived lead could be recognized by the distinctive unradiogenic composition (206Pb/207Pb ratios down to approximately 1.115), being clearly different from the pre-industrial values (206Pb/207Pb approximately 1.166). In contrast, the lead pollution in eastern Canada (influenced by North American sources) is identified by a more radiogenic lead isotope composition (206Pb/207Pb ratios up to approximately 1.199) compared to preindustrial values (206Pb/207Pb approximately 1.161). Emission inventories and isotope characteristics suggest that industrial (coal burning, mining) and traffic (leaded gasoline) outputs are the most likely sources during the first and the second half of the 20th century, respectively, in both, western Scotland and eastern Canada alike. The Scottish record is in line with previous studies of past atmospheric lead deposition. However, the Canadian deposit suggests that the wind derived, pre-industrial lead, is less radiogenic as previously implied using sediment archives. These results are thus the first to report pre-industrial lead isotope ratios and concentrations of atmospheric derived aerosols in North America.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Chumbo/análise , Poluentes do Solo/análise , Solo/análise , Canadá , Isótopos , Escócia , Fatores de TempoRESUMO
Surficial sediment samples were obtained from 25 locations within Kuwait Bay and outside the Bay, in the Northwestern Arabian Gulf, to access recent pollution in Kuwait. The historical deposition of PBDEs to this portion of the Arabian Gulf was reconstructed by collecting a sediment core at the entrance of Kuwait Bay. The mean (and range) in concentrations of ∑11PBDEs in surficial sediments was 0.164±0.09 (0.06-0.44) pg/g dw. The concentrations measured in Kuwait Bay were generally higher than those measured in the open Gulf. When the concentrations were normalized to organic carbon, the average ∑11PBDEs concentrations measured in Kuwait Bay were seven times higher than average concentrations outside the Bay. The historical record, reconstructed from a sediment core collected at the entrance of Kuwait Bay, showed that Σ11PBDE concentrations were generally low in deeper sediment sections. The concentrations started to increase above background in the mid-1950s and increased sharply to a maximum Σ11PBDE concentration of ca 1,100 pg/g in the late 1980s. Concentrations decreased thereafter until another pulse in concentrations was observed around the early 2000 followed by a decrease in subsequent years. It is likely that the initial pulse in concentration recorded in sediments is related to inputs from the Gulf war of 1991. The penta congeners were observed throughout the length of the core although the concentrations were low. The congeners present in the Deca-PBDE technical mixture, particularly BDE 209 which is the main congener in the Deca-BDE mixture, occurred in sediment cores around the 1980s, and the concentrations increased rapidly thereafter being the most dominant congener since their first detection in sediments. The presence of nona-BDE congeners in proportions exceeding those in commercial mixtures may be suggestive of debromination of BDE 209 in sediments.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise , Kuweit , Água do Mar/química , Análise Espaço-Temporal , Poluição Química da Água/estatística & dados numéricosRESUMO
Growth limitation of phytoplankton and unicellular nitrogen (N(2)) fixers (diazotrophs) were investigated in the oligotrophic Western South Pacific Ocean. Based on change in abundances of nifH or 23S rRNA gene copies during nutrient-enrichment experiments, the factors limiting net growth of the unicellular diazotrophs UCYN-A (Group A), Crocosphaera watsonii, γ-Proteobacterium 24774A11, and the non-diazotrophic picocyanobacterium Prochlorococcus, varied within the region. At the westernmost stations, numbers were enhanced by organic carbon added as simple sugars, a combination of iron and an organic chelator, or iron added with phosphate. At stations nearest the equator, the nutrient-limiting growth was not apparent. Maximum net growth rates for UCYN-A, C. watsonii and γ-24774A11 were 0.19, 0.61 and 0.52 d(-1), respectively, which are the first known empirical growth rates reported for the uncultivated UCYN-A and the γ-24774A11. The addition of N enhanced total phytoplankton biomass up to 5-fold, and the non-N(2)-fixing Synechococcus was among the groups that responded favorably to N addition. Nitrogen was the major nutrient-limiting phytoplankton biomass in the Western South Pacific Ocean, while availability of organic carbon or iron and organic chelator appear to limit abundances of unicellular diazotrophs. Lack of phytoplankton response to nutrient additions in the Pacific warm pool waters suggests diazotroph growth in this area is controlled by different factors than in the higher latitudes, which may partially explain previously observed variability in community composition in the region.
Assuntos
Bactérias/metabolismo , Fitoplâncton/metabolismo , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Biomassa , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Gammaproteobacteria/metabolismo , Compostos Inorgânicos/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceano Pacífico , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/químicaRESUMO
A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow(®) chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO(3), and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH)(2) coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.
RESUMO
Ocean viruses alter ecosystems through host mortality, horizontal gene transfer and by facilitating remineralization of limiting nutrients. However, the study of wild viral populations is limited by inefficient and unreliable concentration techniques. Here, we develop a new technique to recover viruses from natural waters using iron-based flocculation and large-pore-size filtration, followed by resuspension of virus-containing precipitates in a pH 6 buffer. Recovered viruses are amenable to gene sequencing, and a variable proportion of phages, depending upon the phage, retain their infectivity when recovered. This Fe-based virus flocculation, filtration and resuspension method (FFR) is efficient (> 90% recovery), reliable, inexpensive and adaptable to many aspects of marine viral ecology and genomics research.
RESUMO
Proxies from Greenland ice cores and North Atlantic marine sediment cores document repeated extreme climate swings of a few decades to millennia during the last glacial cycle, including periods of intense ice rafting called Heinrich events (HEs). We have found similar oxygen isotope variations recorded in mixed-layer-and thermocline-dwelling planktonic foraminifera during HEs 0, 1, and 4, suggesting that three foraminiferal taxa calcified their shells at similar temperatures in a homogenized upperwater column. This implies that the surface mixed layer was deeper during HEs. Similar deepening occurred on the northern margin of the ice-rafted-debris belt, implying that these deep mixed layers during HEs were widespread in the region. We suggest that an increase in storminess during HEs intensified the vertical mixing of meltwater from ice rafting in the upper ocean.