Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 589(7841): 211-213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33442039

RESUMO

Soft γ-ray repeaters exhibit bursting emission in hard X-rays and soft γ-rays. During the active phase, they emit random short (milliseconds to several seconds long), hard-X-ray bursts, with peak luminosities1 of 1036 to 1043 erg per second. Occasionally, a giant flare with an energy of around 1044 to 1046 erg is emitted2. These phenomena are thought to arise from neutron stars with extremely high magnetic fields (1014 to 1015 gauss), called magnetars1,3,4. A portion of the second-long initial pulse of a giant flare in some respects mimics short γ-ray bursts5,6, which have recently been identified as resulting from the merger of two neutron stars accompanied by gravitational-wave emission7. Two γ-ray bursts, GRB 051103 and GRB 070201, have been associated with giant flares2,8-11. Here we report observations of the γ-ray burst GRB 200415A, which we localized to a 20-square-arcmin region of the starburst galaxy NGC 253, located about 3.5 million parsecs away. The burst had a sharp, millisecond-scale hard spectrum in the initial pulse, which was followed by steady fading and softening over 0.2 seconds. The energy released (roughly 1.3 × 1046 erg) is similar to that of the superflare5,12,13 from the Galactic soft γ-ray repeater SGR 1806-20 (roughly 2.3 × 1046 erg). We argue that GRB 200415A is a giant flare from a magnetar in NGC 253.

2.
Nature ; 568(7750): 55-60, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30890786

RESUMO

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.


Assuntos
Meio Ambiente Extraterreno/química , Planetas Menores , Voo Espacial , Exobiologia , Origem da Vida , Voo Espacial/instrumentação , Propriedades de Superfície
3.
Environ Monit Assess ; 188(10): 543, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27586259

RESUMO

One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the tributary. The overall result provided a more detailed and realistic characterization of the shallow water DO minimum conditions that have the potential to be extended to other tributaries and regions. Broader applications of this model include instantaneous DO criteria assessment, utilizing this model in combination with aerial remote sensing, and developing DO amplitude as an indicator of impaired water bodies.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Eutrofização , Oxigênio/análise , Ecossistema , Maryland , Modelos Teóricos
4.
Nature ; 434(7037): 1098-103, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858565

RESUMO

Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.

5.
Science ; 214(4518): 331-3, 1981 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17829789

RESUMO

The abundance of samarium-152 in the Santa Clara iron meteorite is found to be 108 x 10(7) atoms per gram. This quantity, if attributed to fission of a superheavy element with atomic number 107 to 109, limits the amount of superheavy elements in the early solar system to 1.7 x 10(-5) times the abundance of uranium-238. For element 110, the limit is 3.4 x 10(-5).

6.
Science ; 248(4957): 843-7, 1990 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17811835

RESUMO

Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary (K-T) boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact. On the southern peninsula of Haiti, a approximately 50-centimeter-thick ejecta layer occurs at the K-T boundary. This ejecta layer is approximately 25 times as thick as that at any known K-T site and suggests an impact site within approximately 1000 kilometers. Seismic reflection profiles suggest that a buried approximately 300-km-diameter candidate structure occurs in the Colombian Basin.

7.
Science ; 205(4404): 395-7, 1979 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790849

RESUMO

The composition and morphology of magnetite in CI carbonaceous meteorites appear incompatible with a nebular origin. Mineralization on the meteorite parent body is a more plausible mode of formation. The iodine-xenon age of this material therefore dates an episode of secondary mineralization on a planetesimal rather than the epoch of condensation in the primitive solar nebula.

8.
Science ; 223(4631): 22-7, 1984 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-17752972

RESUMO

Anoxia occurs annually in deeper waters of the central portion of the Chesapeake Bay and presently extends from Baltimore to the mouth of the Potomac estuary. This condition, which encompasses some 5 billion cubic meters of water and lasts from May to September, is the result of increased stratification of the water column in early spring, with consequent curtailment of reoxygenation of the bottom waters across the halocline, and benthic decay of organic detritus accumulated from plankton blooms of the previous summer and fall. The Chesapeake Bay anoxia appears to have had significant ecological effects on many marine species, including several of economic importance.

9.
Nat Astron ; 3(4): 332-340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360777

RESUMO

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

10.
Nat Geosci ; 12(4): 247-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31080497

RESUMO

The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu's shape. Here, we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu's top-like shape, considerable macroporosity, and prominent surface boulders suggest that it is a rubble pile. High-standing, north-south ridges that extend from pole to pole, many long grooves, and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin leading to its current shape. Today, Bennu might follow a different evolutionary pathway, with interior stiffness permitting surface cracking and mass wasting.

11.
Icarus ; 255: 100-115, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798496

RESUMO

The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.

12.
Acta Astronaut ; 40(9): 663-74, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-11540784

RESUMO

The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.


Assuntos
Meio Ambiente Extraterreno , Gelo/análise , Meteoroides , Voo Espacial/instrumentação , Astronave/instrumentação , Amônia , Astronomia/instrumentação , Varredura Diferencial de Calorimetria , Isótopos de Carbono , Desenho de Equipamento , Evolução Química , Cromatografia Gasosa-Espectrometria de Massas , Metano , Isótopos de Oxigênio , Espectrometria gama , Água
13.
Science ; 334(6059): 1058-d, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22116866

RESUMO

Critical comments from Lawrence et al. are considered on the capability of the collimated neutron telescope Lunar Exploration Neutron Detector (LEND) on NASA's Lunar Reconnaissance Orbiter (LRO) for mapping lunar epithermal neutrons, as presented in our paper. We present two different analyses to show that our previous estimated count rates are valid and support the conclusions of that paper.


Assuntos
Lua
14.
Science ; 330(6003): 483-6, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20966247

RESUMO

Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon's south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.


Assuntos
Lua , Meio Ambiente Extraterreno , Hidrogênio , Análise Espectral
15.
Science ; 325(5936): 64-7, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574385

RESUMO

The Wet Chemistry Laboratory on the Phoenix Mars Lander performed aqueous chemical analyses of martian soil from the polygon-patterned northern plains of the Vastitas Borealis. The solutions contained approximately 10 mM of dissolved salts with 0.4 to 0.6% perchlorate (ClO4) by mass leached from each sample. The remaining anions included small concentrations of chloride, bicarbonate, and possibly sulfate. Cations were dominated by Mg2+ and Na+, with small contributions from K+ and Ca2+. A moderately alkaline pH of 7.7 +/- 0.5 was measured, consistent with a carbonate-buffered solution. Samples analyzed from the surface and the excavated boundary of the approximately 5-centimeter-deep ice table showed no significant difference in soluble chemistry.


Assuntos
Ânions , Cátions , Marte , Percloratos , Fenômenos Químicos , Meio Ambiente Extraterreno , Concentração de Íons de Hidrogênio , Oxirredução , Solubilidade , Astronave , Temperatura , Água
16.
Science ; 325(5936): 61-4, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574384

RESUMO

Carbonates are generally products of aqueous processes and may hold important clues about the history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry showing an endothermic transition beginning around 725 degrees C accompanied by evolution of carbon dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical kinetics, the amount of calcium carbonate is most consistent with formation in the past by the interaction of atmospheric carbon dioxide with liquid water films on particle surfaces.


Assuntos
Carbonato de Cálcio , Marte , Dióxido de Carbono , Precipitação Química , Meio Ambiente Extraterreno , Temperatura Alta , Concentração de Íons de Hidrogênio , Astronave , Água
17.
Science ; 325(5936): 58-61, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574383

RESUMO

The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.


Assuntos
Gelo , Marte , Água , Carbonato de Cálcio , Meio Ambiente Extraterreno , Concentração de Íons de Hidrogênio , Robótica , Astronave , Temperatura
18.
Astrobiology ; 8(4): 793-804, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18844457

RESUMO

The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.


Assuntos
Lua , Nêutrons , Temperatura Baixa , Desenho de Equipamento , Meio Ambiente Extraterreno , Hidrogênio , Gelo , Modelos Teóricos , Voo Espacial/instrumentação , Astronave/instrumentação , Estados Unidos , United States National Aeronautics and Space Administration
19.
Astrobiology ; 8(3): 605-12, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18598140

RESUMO

We present a summary of the physical principles and design of the Dynamic Albedo of Neutrons (DAN) instrument onboard NASA's 2009 Mars Science Laboratory (MSL) mission. The DAN instrument will use the method of neutron-neutron activation analysis in a space application to study the abundance and depth distribution of water in the martian subsurface along the path of the MSL rover.


Assuntos
Laboratórios , Marte , Nêutrons , Voo Espacial/instrumentação , United States National Aeronautics and Space Administration , Hidrogênio/análise , Análise Numérica Assistida por Computador , Solo/análise , Estados Unidos
20.
Am J Public Health ; 74(11): 1263-4, 1984 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-6496821

RESUMO

Hospital discharge data from Rhode Island were used to assess the role of motor vehicle crashes in causing several types of serious injuries. Motor vehicle crashes were the cause of injury for approximately two-thirds of patients hospitalized with injuries to the chest organs, liver, and spleen, and approximately one-third of those with traumatic pneumothorax or hemothorax, and injuries to the head, kidney, intestine, distal femur, pelvis, and patella.


Assuntos
Acidentes de Trânsito , Ferimentos e Lesões/etiologia , Fraturas Ósseas/etiologia , Hospitalização , Humanos , Rhode Island , Traumatismos Torácicos/etiologia , Ferimentos e Lesões/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa