Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Respir Res ; 19(1): 68, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678179

RESUMO

BACKGROUND: Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. METHODS: Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. RESULTS: We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. CONCLUSIONS: We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/biossíntese , Células THP-1/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adulto , Feminino , Expressão Gênica , Voluntários Saudáveis , Humanos , Imunidade Celular/fisiologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte de Cátions Orgânicos/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Simportadores , Células THP-1/imunologia , Adulto Jovem
2.
Br J Clin Pharmacol ; 83(2): 381-392, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27558866

RESUMO

AIM: AZD1981 is an orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) receptor antagonist progressed to phase II trials for the treatment of allergic asthma. Previously performed in vitro human hepatocyte incubations identified N-deacetylated AZD1981 as a primary metabolite. We report on metabolite exposure from a clinical excretion balance, on in vitro studies performed to determine the likelihood of a metabolite-dependent drug-drug interaction (DDI) and on a clinical warfarin DDI study. The aim was to demonstrate that N-deacetylated AZD1981 is responsible for the observed interaction. METHODS: The excretion and biotransformation of [14 C]-AZD1981 were studied in healthy male volunteers, and subsequently in vitro cytochrome P450 (CYP) inhibition and hepatocyte uptake investigations were carried out with metabolites and the parent drug. A clinical DDI study using coadministered twice-daily 100 mg and 400 mg AZD1981 with 25 mg warfarin was performed. RESULTS: The excretion balance study showed N-deacetylated AZD1981 to be the most abundant metabolite present in plasma. In vitro data revealed the metabolite to be a weak CYP2C9 time-dependent inhibitor, subject to more active hepatic uptake than the parent molecule. Clinically, the S-warfarin area under the plasma concentration-time curve increased, on average, 1.4-fold [95% confidence interval (CI) 1.22, 1.50] and 2.4-fold (95% CI 2.11, 2.64) after 100 mg (n = 13) and 400 mg (n = 11) AZD1981 administration, respectively. In vitro CYP inhibition and hepatocyte uptake data were used to explain the interaction. CONCLUSIONS: N-deacetylated AZD1981 can be added to the small list of drug metabolites reported as sole contributors to clinical drug-drug interactions, with weak time-dependent inhibition exacerbated by efficient hepatic uptake being the cause.


Assuntos
Acetatos/farmacocinética , Inibidores do Citocromo P-450 CYP2C9/farmacocinética , Hepatócitos/metabolismo , Indóis/farmacocinética , Varfarina/farmacocinética , Acetatos/administração & dosagem , Acetatos/metabolismo , Adulto , Área Sob a Curva , Citocromo P-450 CYP2C9/efeitos dos fármacos , Citocromo P-450 CYP2C9/metabolismo , Inibidores do Citocromo P-450 CYP2C9/administração & dosagem , Inibidores do Citocromo P-450 CYP2C9/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Humanos , Indóis/administração & dosagem , Indóis/metabolismo , Masculino , Projetos Piloto , Fatores de Tempo
3.
Drug Metab Dispos ; 41(7): 1347-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620485

RESUMO

A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells--Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Digoxina/farmacocinética , Medição de Risco , Animais , Transporte Biológico , Células CACO-2 , Cães , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Células LLC-PK1 , Análise de Componente Principal , Suínos
4.
Mol Pharm ; 10(11): 4252-62, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24079718

RESUMO

Two clinical trials and a large set of in vitro transporter experiments were performed to investigate if the hepatobiliary disposition of the direct thrombin inhibitor prodrug AZD0837 is the mechanism for the drug-drug interaction with ketoconazole observed in a previous clinical study. In Study 1, [(3)H]AZD0837 was administered to healthy male volunteers (n = 8) to quantify and identify the metabolites excreted in bile. Bile was sampled directly from the jejunum by duodenal aspiration via an oro-enteric tube. In Study 2, the effect of ketoconazole on the plasma and bile pharmacokinetics of AZD0837, the intermediate metabolite (AR-H069927), and the active form (AR-H067637) was investigated (n = 17). Co-administration with ketoconazole elevated the plasma exposure to AZD0837 and the active form approximately 2-fold compared to placebo, which may be explained by inhibited CYP3A4 metabolism and reduced biliary clearance, respectively. High concentrations of the active form was measured in bile with a bile-to-plasma AUC ratio of approximately 75, indicating involvement of transporter-mediated excretion of the compound. AZD0837 and its metabolites were further investigated as substrates of hepatic uptake and efflux transporters in vitro. Studies in MDCK-MDR1 cell monolayers and P-glycoprotein (P-gp) expressing membrane vesicles identified AZD0837, the intermediate, and the active form as substrates of P-gp. The active form was also identified as a substrate of the multidrug and toxin extrusion 1 (MATE1) transporter and the organic cation transporter 1 (OCT1), in HEK cells transfected with the respective transporter. Ketoconazole was shown to inhibit all of these three transporters; in particular, inhibition of P-gp and MATE1 occurred in a clinically relevant concentration range. In conclusion, the hepatobiliary transport pathways of AZD0837 and its metabolites were identified in vitro and in vivo. Inhibition of the canalicular transporters P-gp and MATE1 may lead to enhanced plasma exposure to the active form, which could, at least in part, explain the clinical interaction with ketoconazole.


Assuntos
Cetoconazol/metabolismo , Fígado/metabolismo , Adulto , Amidinas/metabolismo , Azetidinas/metabolismo , Bile/metabolismo , Interações Medicamentosas , Humanos , Masculino , Adulto Jovem
5.
ACS Nano ; 15(4): 6684-6698, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33769805

RESUMO

Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.


Assuntos
Budesonida , Dióxido de Silício , Administração por Inalação , Aerossóis , Humanos , Lactose , Pulmão , Tamanho da Partícula , Pós
6.
ACS Med Chem Lett ; 10(6): 972-977, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223457

RESUMO

The further optimization of a recently disclosed series of inverse agonists of the nuclear receptor RORC2 is described. Investigations into the left-hand side of compound 1, guided by X-ray crystal structures, led to the substitution of the 4-aryl-thiophenyl residue with the hexafluoro-2-phenyl-propan-2-ol moiety. This change resulted in to compound 28, which combined improved drug-like properties with good cell potency and a significantly lower dose, using an early dose to man prediction. Target engagement in vivo was demonstrated in the thymus of mice by a reduction in the number of double positive T cells after oral dosing.

7.
Pharmaceutics ; 7(4): 554-64, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694455

RESUMO

Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa