Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35358044

RESUMO

A Green's function in an acoustic medium can be retrieved from reflection data by solving a multidimensional Marchenko equation. This procedure requires a priori knowledge of the initial focusing function, which can be interpreted as the inverse of a transmitted wavefield as it would propagate through the medium, excluding (multiply) reflected waveforms. In practice, the initial focusing function is often replaced by a time-reversed direct wave, which is computed with help of a macro velocity model. Green's functions that are retrieved under this (direct-wave) approximation typically lack forward-scattered waveforms and their associated multiple reflections. We examine whether this problem can be mitigated by incorporating transmission data. Based on these transmission data, we derive an auxiliary equation for the forward-scattered components of the initial focusing function. We demonstrate that this equation can be solved in an acoustic medium with mass density contrast and constant propagation velocity. By solving the auxiliary and Marchenko equation successively, we can include forward-scattered waveforms in our Green's function estimates, as we demonstrate with a numerical example.


Assuntos
Acústica , Modelos Teóricos
2.
Sci Rep ; 8(1): 2497, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410493

RESUMO

A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source response from the enclosing boundary into the medium. However, in many practical situations the medium can be accessed from one side only. In those cases the time-reversal approach is not exact. Here, we demonstrate the experimental design and use of complex focusing functions to create virtual acoustic sources and virtual receivers inside an inhomogeneous medium with single-sided access. The retrieved virtual acoustic responses between those sources and receivers mimic the complex propagation and multiple scattering paths of waves that would be ignited by physical sources and recorded by physical receivers inside the medium. The possibility to predict complex virtual acoustic responses between any two points inside an inhomogeneous medium, without needing a detailed model of the medium, has large potential for holographic imaging and monitoring of objects with single-sided access, ranging from photoacoustic medical imaging to the monitoring of induced-earthquake waves all the way from the source to the earth's surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa