Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(1): E14-E28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938177

RESUMO

Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.


Assuntos
Proteínas Quinases Ativadas por AMP , Fígado Gorduroso , Humanos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Hepático , Fígado/metabolismo , Glucose/metabolismo , Fígado Gorduroso/metabolismo , Ácidos Graxos/metabolismo
2.
J Biol Chem ; 293(30): 11944-11954, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29891549

RESUMO

Glycine N-methyltransferase (GNMT) is the most abundant liver methyltransferase regulating the availability of the biological methyl donor, S-adenosylmethionine (SAM). Moreover, GNMT has been identified to be down-regulated in hepatocellular carcinoma (HCC). Despite its role in regulating SAM levels and association of its down-regulation with liver tumorigenesis, the impact of reduced GNMT on metabolic reprogramming before the manifestation of HCC has not been investigated in detail. Herein, we used 2H/13C metabolic flux analysis in conscious, unrestrained mice to test the hypothesis that the absence of GNMT causes metabolic reprogramming. GNMT-null (KO) mice displayed a reduction in blood glucose that was associated with a decline in both hepatic glycogenolysis and gluconeogenesis. The reduced gluconeogenesis was due to a decrease in liver gluconeogenic precursors, citric acid cycle fluxes, and anaplerosis and cataplerosis. A concurrent elevation in both hepatic SAM and metabolites of SAM utilization pathways was observed in the KO mice. Specifically, the increase in metabolites of SAM utilization pathways indicated that hepatic polyamine synthesis and catabolism, transsulfuration, and de novo lipogenesis pathways were increased in the KO mice. Of note, these pathways utilize substrates that could otherwise be used for gluconeogenesis. Also, this metabolic reprogramming occurs before the well-documented appearance of HCC in GNMT-null mice. Together, these results indicate that GNMT deletion promotes a metabolic shift whereby nutrients are channeled away from glucose formation toward pathways that utilize the elevated SAM.


Assuntos
Carbono/metabolismo , Deleção de Genes , Gluconeogênese , Glicina N-Metiltransferase/genética , Metionina/metabolismo , Animais , Ciclo do Ácido Cítrico , Metabolismo Energético , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Masculino , Análise do Fluxo Metabólico , Camundongos , Camundongos Knockout , S-Adenosilmetionina/metabolismo
3.
Am J Physiol Endocrinol Metab ; 317(6): E973-E983, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550181

RESUMO

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient (cd44-/-) mice and wild-type littermates (cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44-/- mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44-/- mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44-/- mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44-/- compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44-/- mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44-/- mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Peso Corporal , Técnica Clamp de Glucose , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos
4.
J Biol Chem ; 292(49): 20125-20140, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038293

RESUMO

Pathologies including diabetes and conditions such as exercise place an unusual demand on liver energy metabolism, and this demand induces a state of energy discharge. Hepatic AMP-activated protein kinase (AMPK) has been proposed to inhibit anabolic processes such as gluconeogenesis in response to cellular energy stress. However, both AMPK activation and glucose release from the liver are increased during exercise. Here, we sought to test the role of hepatic AMPK in the regulation of in vivo glucose-producing and citric acid cycle-related fluxes during an acute bout of muscular work. We used 2H/13C metabolic flux analysis to quantify intermediary metabolism fluxes in both sedentary and treadmill-running mice. Additionally, liver-specific AMPK α1 and α2 subunit KO and WT mice were utilized. Exercise caused an increase in endogenous glucose production, glycogenolysis, and gluconeogenesis from phosphoenolpyruvate. Citric acid cycle fluxes, pyruvate cycling, anaplerosis, and cataplerosis were also elevated during this exercise. Sedentary nutrient fluxes in the postabsorptive state were comparable for the WT and KO mice. However, the increment in the endogenous rate of glucose appearance during exercise was blunted in the KO mice because of a diminished glycogenolytic flux. This lower rate of glycogenolysis was associated with lower hepatic glycogen content before the onset of exercise and prompted a reduction in arterial glucose during exercise. These results indicate that liver AMPKα1α2 is required for maintaining glucose homeostasis during an acute bout of exercise.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicogenólise , Fígado/enzimologia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Metabolismo Energético , Gluconeogênese , Glucose/metabolismo , Homeostase , Marcação por Isótopo , Camundongos , Camundongos Knockout
5.
J Biol Chem ; 290(10): 6546-57, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593319

RESUMO

Hepatic insulin resistance is associated with increased collagen. Integrin α1ß1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1(-/-)) and wild-type (itga1(+/+)) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1(+/+) mice. In contrast, it was not suppressed in HF-fed itga1(-/-) mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1(-/-) mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1(-/-) mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1(-/-) mice. The decrease in hepatic lipid accumulation in HF-fed itga1(-/-) mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.


Assuntos
Fígado Gorduroso/metabolismo , Glucose/metabolismo , Resistência à Insulina/genética , Integrina alfa1/biossíntese , Animais , Dieta Hiperlipídica , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Integrina alfa1/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Triglicerídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(19): E1143-52, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22493234

RESUMO

Obesity triggers a low-grade systemic inflammation, which plays an important role in the development of obesity-associated metabolic diseases. In searching for links between lipid accumulation and chronic inflammation, we examined invariant natural killer T (iNKT) cells, a subset of T lymphocytes that react with lipids and regulate inflammatory responses. We show that iNKT cells respond to dietary lipid excess and become activated before or at the time of tissue recruitment of inflammatory leukocytes, and that these cells progressively increase proinflammatory cytokine production in obese mice. Such iNKT cells skew other leukocytes toward proinflammatory cytokine production and induce an imbalanced proinflammatory cytokine environment in multiple tissues. Further, iNKT cell deficiency ameliorates tissue inflammation and provides protection against obesity-induced insulin resistance and hepatic steatosis. Conversely, chronic iNKT cell stimulation using a canonical iNKT cell agonist exacerbates tissue inflammation and obesity-associated metabolic disease. These findings place iNKT cells into the complex network linking lipid excess to inflammation in obesity and suggest new therapeutic avenues for obesity-associated metabolic disorders.


Assuntos
Fígado Gorduroso/imunologia , Galactosilceramidas/fisiologia , Inflamação/imunologia , Resistência à Insulina/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/imunologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/imunologia , Fígado Gorduroso/genética , Feminino , Citometria de Fluxo , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Inflamação/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Resistência à Insulina/genética , Lipídeos/administração & dosagem , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Obesidade/genética
7.
Am J Physiol Cell Physiol ; 306(1): C19-27, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24196528

RESUMO

A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[(14)C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction.


Assuntos
Difosfato de Adenosina/farmacologia , Glucose/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/cirurgia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia
8.
Diabetologia ; 57(3): 603-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24305966

RESUMO

AIMS/HYPOTHESIS: Increased extracellular matrix (ECM) collagen is a characteristic of muscle insulin resistance. Matrix metalloproteinase (MMP) 9 is a primary enzyme that degrades collagen IV (ColIV). As a component of the basement membrane, ColIV plays a key role in ECM remodelling. We tested the hypotheses that genetic deletion of MMP9 in mice increases muscle ColIV, induces insulin resistance in lean mice and worsens diet-induced muscle insulin resistance. METHODS: Wild-type (Mmp9(+/+)) and Mmp9-null (Mmp9(-/-)) mice were chow or high-fat (HF) fed for 16 weeks. Insulin action was measured by the hyperinsulinaemic-euglycaemic clamp in conscious weight-matched surgically catheterised mice. RESULTS: Mmp9(-/-) and HF feeding independently increased muscle ColIV. ColIV in HF-fed Mmp9(-/-) mice was further increased. Mmp9(-/-) did not affect fasting insulin or glucose in chow- or HF-fed mice. The glucose infusion rate (GIR), endogenous glucose appearance (EndoRa) and glucose disappearance (Rd) rates, and a muscle glucose metabolic index (Rg), were the same in chow-fed Mmp9(+/+) and Mmp9(-/-) mice. In contrast, HF-fed Mmp9(-/-) mice had decreased GIR, insulin-stimulated increase in Rd and muscle Rg. Insulin-stimulated suppression of EndoRa, however, remained the same in HF-fed Mmp9(-/-) and Mmp9(+/+) mice. Decreased muscle Rg in HF-fed Mmp9(-/-) was associated with decreased muscle capillaries. CONCLUSIONS/INTERPRETATION: Despite increased muscle ColIV, genetic deletion of MMP9 does not induce insulin resistance in lean mice. In contrast, this deletion results in a more profound state of insulin resistance, specifically in the skeletal muscle of HF-fed mice. These results highlight the importance of ECM remodelling in determining muscle insulin resistance in the presence of HF diet.


Assuntos
Colágeno Tipo V/metabolismo , Matriz Extracelular/metabolismo , Resistência à Insulina , Insulina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica , Deleção de Genes , Técnica Clamp de Glucose , Imuno-Histoquímica , Secreção de Insulina , Metaloproteinase 9 da Matriz/genética , Camundongos , Músculo Esquelético/imunologia , Fator A de Crescimento do Endotélio Vascular/genética
9.
Cardiovasc Diabetol ; 12: 128, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007410

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. METHODS: C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. RESULTS: MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. CONCLUSIONS: These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos/sangue , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , Fosforilação Oxidativa , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Volume Sistólico , Sístole , Fatores de Tempo
10.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1399-408, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200137

RESUMO

Endothelial nitric oxide synthase (eNOS) is associated with a number of physiological functions involved in the regulation of metabolism; however, the functional role of eNOS is poorly understood. We tested the hypothesis that eNOS is critical to muscle cell signaling and fuel usage during exercise in vivo, using 16-wk-old catheterized (carotid artery and jugular vein) C57BL/6J mice with wild-type (WT), partial (+/-), or no expression (-/-) of eNOS. Quantitative reductions in eNOS expression ( approximately 40%) elicited many of the phenotypic effects observed in enos(-/-) mice under fasted, sedentary conditions, with expression of oxidative phosphorylation complexes I to V and ATP levels being decreased, and total NOS activity and Ca(2+)/CaM kinase II Thr(286) phosphorylation being increased in skeletal muscle. Despite these alterations, exercise tolerance was markedly impaired in enos(-/-) mice during an acute 30-min bout of exercise. An eNOS-dependent effect was observed with regard to AMP-activated protein kinase signaling and muscle perfusion. Muscle glucose and long-chain fatty acid uptake, and hepatic and skeletal muscle glycogenolysis during the exercise bout was markedly accelerated in enos(-/-) mice compared with enos(+/-) and WT mice. Correspondingly, enos(-/-) mice exhibited hypoglycemia during exercise. Thus, the ablation of eNOS alters a number of physiological processes that result in impaired exercise capacity in vivo. The finding that a partial reduction in eNOS expression is sufficient to induce many of the changes associated with ablation of eNOS has implications for chronic metabolic diseases, such as obesity and insulin resistance, which are associated with reduced eNOS expression.


Assuntos
Metabolismo Energético/fisiologia , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Esforço Físico/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Calorimetria Indireta , Feminino , Gluconeogênese/fisiologia , Glicogênio/metabolismo , Hipoglicemia/metabolismo , Hipoglicemia/fisiopatologia , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/fisiologia , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/genética , Fosforilação Oxidativa , Fotoperíodo , Condicionamento Físico Animal/fisiologia , Gravidez , Fluxo Sanguíneo Regional/fisiologia
11.
Obesity (Silver Spring) ; 28(2): 303-314, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31903723

RESUMO

OBJECTIVE: The continuous endothelium of skeletal muscle (SkM) capillaries regulates insulin's access to skeletal myocytes. Whether impaired transendothelial insulin transport (EIT) contributes to SkM insulin resistance (IR), however, is unknown. METHODS: Male and female C57/Bl6 mice were fed either chow or a high-fat diet for 16 weeks. Intravital microscopy was used to measure EIT in SkM capillaries, electron microscopy to assess endothelial ultrastructure, and glucose tracers to measure indices of glucose metabolism. RESULTS: Diet-induced obesity (DIO) male mice were found to have a ~15% reduction in EIT compared with lean mice. Impaired EIT was associated with a 45% reduction in endothelial vesicles. Despite impaired EIT, hyperinsulinemia sustained delivery of insulin to the interstitial space in DIO male mice. Even with sustained interstitial insulin delivery, DIO male mice still showed SkM IR indicating severe myocellular IR in this model. Interestingly, there was no difference in EIT, endothelial ultrastructure, or SkM insulin sensitivity between lean female mice and female mice fed a high-fat diet. CONCLUSIONS: These results suggest that, in male mice, obesity results in ultrastructural alterations to the capillary endothelium that delay EIT. Nonetheless, the myocyte appears to exceed the endothelium as a contributor to SkM IR in DIO male mice.


Assuntos
Capilares/fisiologia , Endotélio Vascular/fisiopatologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Masculino , Camundongos , Camundongos Obesos
12.
Diabetes ; 69(8): 1636-1649, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439824

RESUMO

Insulin resistance due to overnutrition places a burden on energy-producing pathways in skeletal muscle (SkM). Nevertheless, energy state is not compromised. The hypothesis that the energy sensor AMPK is necessary to offset the metabolic burden of overnutrition was tested using chow-fed and high-fat (HF)-fed SkM-specific AMPKα1α2 knockout (mdKO) mice and AMPKα1α2lox/lox littermates (wild-type [WT]). Lean mdKO and WT mice were phenotypically similar. HF-fed mice were equally obese and maintained lean mass regardless of genotype. Results did not support the hypothesis that AMPK is protective during overnutrition. Paradoxically, mdKO mice were more insulin sensitive. Insulin-stimulated SkM glucose uptake was approximately twofold greater in mdKO mice in vivo. Furthermore, insulin signaling, SkM GLUT4 translocation, hexokinase activity, and glycolysis were increased. AMPK and insulin signaling intersect at mammalian target of rapamycin (mTOR), a critical node for cell proliferation and survival. Basal mTOR activation was reduced by 50% in HF-fed mdKO mice, but was normalized by insulin stimulation. Mitochondrial function was impaired in mdKO mice, but energy charge was preserved by AMP deamination. Results show a surprising reciprocity between SkM AMPK signaling and insulin action that manifests with diet-induced obesity, as insulin action is preserved to protect fundamental energetic processes in the muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Hexoquinase/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Camundongos Obesos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Int J Radiat Oncol Biol Phys ; 106(4): 878-886, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805366

RESUMO

PURPOSE: Diabetes mellitus is a delayed effect of radiation exposure in human and nonhuman primates. Diabetes mellitus is characterized by peripheral tissue insulin resistance, and as a result, irradiation exposure may cause important changes in insulin-sensitive tissues such as muscle and adipose. METHODS AND MATERIALS: We prospectively investigated changes in response to irradiation (4 Gy whole body exposure) in 16 male rhesus macaques. We evaluated changes in body composition and glycemic control for 2 years. Insulin responsiveness, lipolysis, inflammation, and fibrosis were evaluated at study end. RESULTS: Irradiated animals accumulate less fat and significantly increased percent glycation of hemoglobin A1c over time, such that 40% of irradiated monkeys had values that define them as diabetic at 2 years. Subcutaneous (SQ) adipose tissue was insulin resistant, as evidenced by reduced phosphorylation of the insulin receptor substrate-1 in response to insulin challenge and had increased basal lipolysis despite comparable insulin exposures to control animals. Irradiated SQ adipose tissue had more macrophage infiltration and adipocytes were larger. The observed hypertrophy was associated with decreased glycemic control and macrophage infiltration correlated with decreased adiponectin, signifying that inflammation is associated with worsening health. No evidence of SQ adipose fibrosis was detected. CONCLUSIONS: Our study is the first to prospectively illustrate that sublethal irradiation exposures directly propagate metabolic disease in the absence of obesity in nonhuman primates and implicate SQ adipose dysfunction as a target tissue.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos da radiação , Resistência à Insulina/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Composição Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Fibrose , Lipólise/efeitos da radiação , Macaca mulatta , Masculino , Exposição à Radiação/efeitos adversos
14.
Biochim Biophys Acta ; 1782(10): 586-92, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18692568

RESUMO

Insulin resistance is characterized by elevated rates of cardiac fatty acid utilization resulting in reduced efficiency and cardiomyopathy. One potential therapeutic approach is to limit the uptake and oxidation of fatty acids. The aims of this study were to determine whether a quantitative reduction in heart-type fatty acid binding protein (FABP3) normalizes cardiac substrate utilization without altering cardiac function. Transgenic (FABP3(+/-)) and wild-type (WT) littermates were studied following low fat (LF) or high fat (HF) diets, with HF resulting in obese, insulin-resistant mice. Cardiovascular function (systolic blood pressure, % fractional shortening) and heart dimension were measured at weaning and every month afterward for 3 mo. During this period cardiovascular function was the same independent of genotype and diet. Catheters were surgically implanted in the carotid artery and jugular vein for sampling and infusions in mice at 4 mo of age. Following 5 d recovery, mice underwent either a saline infusion or a hyperinsulinemic-euglycemic clamp (4 mU kg(-1) min(-1)). Indices of long chain fatty acid and glucose utilization (R(f), R(g); mumol g wet weight(-1) min(-1)) were obtained using 2-deoxy[(3)H]glucose and [(125)I]-15-rho-iodophenyl)-3-R,S-methylpentadecanoic acid. FABP3(+/-) had enhanced cardiac R(g) compared with WT during saline infusion in both LF and HF. FABP3(+/-) abrogated the HF-induced decrement in insulin-stimulated cardiac R(g). On a HF diet, FABP(+/-) but not WT had an increased reliance on fatty acids (R(f)) during insulin stimulation. In conclusion, cardiac insulin resistance and glucose uptake is largely corrected by a reduction in FABP3 in vivo without contemporaneous deleterious effects on cardiac function.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Resistência à Insulina/fisiologia , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Peso Corporal , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos não Esterificados/sangue , Feminino , Técnica Clamp de Glucose , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Função Ventricular/fisiologia
15.
Diabetes ; 56(4): 1025-33, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229936

RESUMO

Stimulation of nitric oxide-cGMP signaling results in vascular relaxation and increased muscle glucose uptake. We show that chronically inhibiting cGMP hydrolysis with the phosphodiesterase-5 inhibitor sildenafil improves energy balance and enhances in vivo insulin action in a mouse model of diet-induced insulin resistance. High-fat-fed mice treated with sildenafil plus L-arginine or sildenafil alone for 12 weeks had reduced weight and fat mass due to increased energy expenditure. However, uncoupling protein-1 levels were not increased in sildenafil-treated mice. Chronic treatment with sildenafil plus L-arginine or sildenafil alone increased arterial cGMP levels but did not adversely affect blood pressure or cardiac morphology. Sildenafil treatment, with or without l-arginine, resulted in lower fasting insulin and glucose levels and enhanced rates of glucose infusion, disappearance, and muscle glucose uptake during a hyperinsulinemic (4 mU x kg(-1) x min(-1))-euglycemic clamp in conscious mice. These effects occurred without an increase in activation of muscle insulin signaling. An acute treatment of high fat-fed mice with sildenafil plus l-arginine did not improve insulin action. These results show that phosphodiesterase-5 is a potential target for therapies aimed at preventing diet-induced energy imbalance and insulin resistance.


Assuntos
Gorduras na Dieta , Metabolismo Energético/efeitos dos fármacos , Insulina/fisiologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Vasodilatadores/farmacologia , Ração Animal , Animais , Arginina/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Ecocardiografia , Comportamento Alimentar/efeitos dos fármacos , Técnica Clamp de Glucose , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Purinas/farmacologia , Citrato de Sildenafila
16.
Diabetes ; 67(10): 1962-1975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30002132

RESUMO

Before insulin can stimulate glucose uptake in muscle, it must be delivered to skeletal muscle (SkM) through the microvasculature. Insulin delivery is determined by SkM perfusion and the rate of movement of insulin across the capillary endothelium. The endothelium therefore plays a central role in regulating insulin access to SkM. Nitric oxide (NO) is a key regulator of endothelial function and stimulates arterial vasodilation, which increases SkM perfusion and the capillary surface area available for insulin exchange. The effects of NO on transendothelial insulin efflux (TIE), however, are unknown. We hypothesized that acute reduction of endothelial NO would reduce TIE. However, intravital imaging of TIE in mice revealed that reduction of NO by l-NG-nitro-l-arginine methyl ester (l-NAME) enhanced the rate of TIE by ∼30% and increased total extravascular insulin delivery. This accelerated TIE was associated with more rapid insulin-stimulated glucose lowering. Sodium nitroprusside, an NO donor, had no effect on TIE in mice. The effects of l-NAME on TIE were not due to changes in blood pressure alone, as a direct-acting vasoconstrictor (phenylephrine) did not affect TIE. These results demonstrate that acute NO synthase inhibition increases the permeability of capillaries to insulin, leading to an increase in delivery of insulin to SkM.


Assuntos
Insulina/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Western Blotting , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
17.
PLoS One ; 13(12): e0208634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533032

RESUMO

The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Sirtuína 2/genética , Acetilação/efeitos dos fármacos , Animais , Metabolismo Energético , Insulina/sangue , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 2/deficiência
18.
Diabetes ; 55(2): 390-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16443772

RESUMO

Despite increased use of the hyperinsulinemic-euglycemic clamp to study insulin action in mice, the effects of experimental parameters on the results obtained have not been addressed. In our studies, we determined the influences of sampling sites, fasting duration, and insulin delivery on results obtained from clamps in conscious mice. Carotid artery and jugular vein catheters were implanted in C57BL/6J mice (n = 6-10/group) fed a normal diet for sampling and infusions. After a 5-day recovery period, mice underwent a 120-min clamp (2.5-mU . kg(-1) . min(-1) insulin infusion; approximately 120-130 mg/dl glucose) while receiving [3-(3)H]glucose to determine glucose appearance (endoR(a)) and disappearance (R(d)). Sampling large volumes (approximately 100 mul) from the cut tail resulted in elevated catecholamines and basal glucose compared with artery sampling. Catecholamines were not elevated when taking small samples ( approximately 5 mul) from the cut tail. Overnight (18-h) fasting resulted in greater loss of total body, lean, and fat masses and hepatic glycogen but resulted in enhanced insulin sensitivity compared with 5-h fasting. Compared with a 16-mU/kg insulin prime, a 300-mU/kg prime resulted in hepatic insulin resistance and slower acquisition of steady-state glucose infusion rates (GIR) after a 5-h fast. The steady-state GIR was expedited after the 300-mU/kg prime in 18-h-fasted mice. The GIR and R(d) rose with increasing insulin infusions (0.8, 2.5, 4, and 20 mU . kg(-1) . min(-1)), but endoR(a) was fully suppressed with doses higher than 0.8 mU . kg(-1) . min(-1). Thus, common variations in experimental factors yield different results and should be considered in designing and interpreting clamps.


Assuntos
Estado de Consciência , Técnica Clamp de Glucose/métodos , Hiperinsulinismo/sangue , Animais , Cateterismo , Relação Dose-Resposta a Droga , Privação de Alimentos , Glucose/administração & dosagem , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Insulina/administração & dosagem , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
Diabetes ; 66(2): 325-334, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899483

RESUMO

The liver extracellular matrix (ECM) expands with high-fat (HF) feeding. This finding led us to address whether receptors for the ECM, integrins, are key to the development of diet-induced hepatic insulin resistance. Integrin-linked kinase (ILK) is a downstream integrin signaling molecule involved in multiple hepatic processes, including those related to differentiation, wound healing, and metabolism. We tested the hypothesis that deletion of ILK in mice on an HF diet would disrupt the ECM-integrin signaling axis, thereby preventing the transformation into the insulin-resistant liver. To determine the role of ILK in hepatic insulin action in vivo, male C57BL/6J ILKlox/lox mice were crossed with Albcre mice to produce a hepatocyte-specific ILK deletion (ILKlox/loxAlbcre). Results from this study show that hepatic ILK deletion has no effect on insulin action in lean mice but sensitizes the liver to insulin during the challenge of HF feeding. This effect corresponds to changes in the expression and activation of key insulin signaling pathways as well as a greater capacity for hepatic mitochondrial glucose oxidation. This demonstrates that ILK contributes to hepatic insulin resistance and highlights the previously undefined role of integrin signaling in the pathogenesis of diet-induced hepatic insulin resistance.


Assuntos
Dieta Hiperlipídica , Matriz Extracelular/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Deleção de Genes , Técnica Clamp de Glucose , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
20.
Diabetes ; 54(11): 3133-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249436

RESUMO

The aim of this study was to determine the contribution of heart-type fatty acid-binding protein (H-FABP) to glucose and long-chain fatty acid (LCFA) utilization in dietary-induced insulin resistance. We tested the hypothesis that H-FABP facilitates increases in LCFA flux present in glucose-intolerant states and that a partial reduction in the amount of this protein would compensate for all or part of the impairment. Transgenic H-FABP heterozygotes (HET) and wild-type (WT) littermates were studied following chow diet (CHD) or high-fat diet (HFD) for 12 weeks. Catheters were surgically implanted in the carotid artery and jugular vein for sampling and infusions, respectively. Following 5 days of recovery, mice received either a saline infusion or underwent a euglycemic insulin clamp (4 mU x kg(-1) x min(-1)) for 120 min. At 90 min, a bolus of 2-deoxyglucose and [125I]-15-(rho-iodophenyl)-3-R,S-methylpentadecanoic acid were administered to obtain indexes of glucose and LCFA utilization. At 120 min, skeletal muscles were excised for tracer determination. All HFD mice were obese and hyperinsulinemic; however, only HFD-WT mice were hyperglycemic. Glucose infusion rates during insulin clamps were 49 +/- 4, 59 +/- 4, 16 +/- 4, and 33 +/- 4 mg x kg(-1) x min(-1) for CHD-WT, CHD-HET, HFD-WT, and HFD-HET mice, respectively, showing that HET limited the severity of whole-body insulin resistance with HFD. Insulin-stimulated muscle glucose utilization was attenuated in HFD-WT but unaffected in HFD-HET mice. Conversely, rates of LCFA clearance were increased with HFD feeding in HFD-WT but not in HFD-HET mice. In conclusion, a partial reduction in H-FABP protein normalizes fasting glucose levels and improves whole-body insulin sensitivity in HFD-fed mice despite obesity.


Assuntos
Proteínas de Ligação a Ácido Graxo/genética , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Miocárdio/metabolismo , Deleção de Sequência/genética , Animais , Glicemia , Mapeamento Cromossômico , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/deficiência , Ácidos Graxos não Esterificados/sangue , Feminino , Glucose/metabolismo , Insulina/sangue , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa