Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401031, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970556

RESUMO

1D fiber devices, known for their exceptional flexibility and seamless integration capabilities, often face trade-offs between desired wearable application characteristics and actual performance. In this study, a multilayer device composed of carbon nanotube (CNT), transition metal carbides/nitrides (MXenes), and cotton fibers, fabricated using a dry spinning method is presented, which significantly enhances both strain sensing and supercapacitor functionality. This core-shell fiber design achieves a record-high sensitivity (GF ≈ 4500) and maintains robust durability under various environmental conditions. Furthermore, the design approach markedly influences capacitance, correlating with the percentage of active material used. Through systematic optimization, the fiber device exhibited a capacitance 26-fold greater than that of a standard neat CNT fiber, emphasizing the crucial role of innovative design and high active material loading in improving device performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa