Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33730705

RESUMO

We investigated the microstructures of carbon nanotube (CNT) films and the effect of CNT length on their mechanical performance. 230 µm-, 300 µm-, and 360 µm- long CNTs were grown and used to fabricate CNT films by a winding process. Opposite from the length effect on CNT fibers, it has been found that the mechanical properties of the CNT films decrease with increasing CNT length. Without fiber twisting, short CNTs tend to bundle together tightly by themselves in the film structure, resulting in an enhanced packing density; meanwhile, they also provide a high degree of CNT alignment, which prominently contributes to high mechanical properties of the CNT films. When CNTs are long, they tend to be bent and entangled, which significantly reduce their packing density, impairing the film mechanical behaviors severely. It has also been unveiled that the determinant effect of the CNT alignment on the film mechanical properties is more significant than that of the film packing density. These findings provide guidance on the optimal CNT length when attempting to fabricate high-performance macroscopic CNT assemblies.

2.
Langmuir ; 36(30): 8792-8799, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663010

RESUMO

The use of porous micro-and nanostructured materials within microfluidic devices results in unique fluid transport characteristics. In this paper, we investigate the microfluidic behavior of hybrid alumina nanotube-based pathways within the hydrophobic carbon nanotube (CNT) barriers. These hybrid systems provide unique benefits for potential liquid transport control in porous structures with real-time sensing of fluids. In particular, we examine how the alignment of the alumina nanostructures with high internal porosity enables increased capillary action and sensitivity of detection. Based on the Lucas and Washburn model (LW) and the modified LW models, the microfluidic behavior of these systems is detailed. The time exponent prediction from the models for capillary transport in porous media is determined to be ≤0.5. The experimental results demonstrate that the average capillary rise in the nanostructured media driven by a capillary force follows t0.7. The hydrophilic/electrically insulating and hydrophobic/electrically conductive patterned structures of the device are used for electronic measurements within the microfluidic channels. The device structure enables the detection of fluid samples of very low analyte concentrations (1 µM) that can be achieved due to the very high surface area of the hybrid structure combined with the electrical conductivity of the CNT support structure.

3.
Nanotechnology ; 29(33): 335302, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29794331

RESUMO

This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

4.
Nanotechnology ; 29(29): 295602, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29697060

RESUMO

In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

5.
Small ; 12(18): 2432-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26969860

RESUMO

Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated.

6.
Small ; 11(31): 3830-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25941071

RESUMO

In order to maximize the carbon nanotube (CNT) buckypaper properties, it is critical to improve their alignment and reduce their waviness. In this paper, a novel approach, microcombing, is reported to fabricate aligned CNT films with a uniform structure. High level of nanotube alignment and straightness was achieved using sharp surgical blades with microsized features at the blade edges to comb single layer of CNT sheet. These microcombs also reduced structural defects within the film and enhanced the nanotube packing density. Following the microcombing approach, the as-produced CNT films demonstrated a tensile strength of up to 3.2 GPa, Young's modulus of up to 172 GPa, and electrical conductivity of up to 1.8 × 10(5) S m(-1) , which are much superior to previously reported CNT films or buckypapers. More importantly, this novel technique requires less rigorous process control and can construct CNT films with reproducible properties.

7.
ACS Appl Mater Interfaces ; 15(2): 3365-3376, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36622361

RESUMO

Carbon nanotube (CNT) yarns are promising for wearable electronic applications due to their excellent electromechanical and thermal properties and structural flexibility. A spinning system was customized to produce CNT-wrapped textile yarns for wearable applications. By adjusting the spinning parameters and core yarn, a highly tailored hybrid CNT yarn could be produced for textile processing, e.g., knitting and weaving. The electrical resistance and mechanical properties of the yarn are influenced by the core yarn. The high flexibility of the yarn enabled state-of-the-art three-dimensional (3D) knitting of the CNT-wrapped yarn for the first time. Using the 3D knitted technology, CNT-wrapped textile yarns were seamlessly integrated into a wrist band and the index finger of a glove. The knitted structure exhibited a large resistance change under strain and precisely recorded the signal under the different movements of the finger and wrist. When the knitted fabric was connected to a power source, rapid heating above skin temperature was observed at a low voltage. This work presents a novel hybrid yarn for the first time, which sustained 30 washing cycles without performance degradation. By changing the core yarn, a highly stretchable and multimodal sensing system could be developed for wearable applications.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Têxteis , Fontes de Energia Elétrica , Eletrônica
8.
ACS Appl Mater Interfaces ; 15(27): 32656-32666, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384459

RESUMO

Stress graphitization is a unique phenomenon at the carbon nanotube (CNT)-matrix interfaces in CNT/carbon matrix (CNT/C) composites. A lack of fundamental atomistic understanding of its evolution mechanisms and a gap between the theoretical and experimental research have hindered the pursuit of utilizing this phenomenon for producing ultrahigh-performance CNT/C composites. Here, we performed reactive molecular dynamics simulations along with an experimental study to explore stress graphitization mechanisms of a CNT/polyacrylonitrile (PAN)-based carbon matrix composite. Different CNT contents in the composite were considered, while the nanotube alignment was controlled in one direction in the simulations. We observe that the system with a higher CNT content exhibits higher localized stress concentration in the periphery of CNTs, causing alignment of the nitrile groups in the PAN matrix along the CNTs, which subsequently results in preferential dehydrogenation and clustering of carbon rings and eventually graphitization of the PAN matrix when carbonized at 1500 K. These simulation results have been validated by experimentally produced CNT/PAN-based carbon matrix composite films, with transmission electron microscopy images showing the formation of additional graphitic layers converted by the PAN matrix around CNTs, where 82 and 144% improvements of the tensile strength and Young's modulus are achieved, respectively. The presented atomistic details of stress graphitization can provide guidance for further optimizing CNT-matrix interfaces in a more predictive and controllable way for the development of novel CNT/C composites with high performance.

9.
ACS Omega ; 7(23): 20006-20019, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721944

RESUMO

Carbon nanotubes (CNTs) are known for their excellent conductive properties. Here, we present two novel methods, "sandwich" (sCNT) and dual deposition (DD CNT), for incorporating CNTs into electrospun polycaprolactone (PCL) and gelatin scaffolds to increase their conductance. Based on CNT percentage, the DD CNT scaffolds contain significantly higher quantities of CNTs than the sCNT scaffolds. The inclusion of CNTs increased the electrical conductance of scaffolds from 0.0 ± 0.00 kS (non-CNT) to 0.54 ± 0.10 kS (sCNT) and 5.22 ± 0.49 kS (DD CNT) when measured parallel to CNT arrays and to 0.25 ± 0.003 kS (sCNT) and 2.85 ± 1.12 (DD CNT) when measured orthogonally to CNT arrays. The inclusion of CNTs increased fiber diameter and pore size, promoting cellular migration into the scaffolds. CNT inclusion also decreased the degradation rate and increased hydrophobicity of scaffolds. Additionally, CNT inclusion increased Young's modulus and failure load of scaffolds, increasing their mechanical robustness. Murine fibroblasts were maintained on the scaffolds for 30 days, demonstrating high cytocompatibility. The increased conductivity and high cytocompatibility of the CNT-incorporated scaffolds make them appropriate candidates for future use in cardiac and neural tissue engineering.

10.
Nanotechnology ; 21(30): 305502, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20610871

RESUMO

Carbon nanotube (CNT) based sensors are often fabricated by dispersing CNTs into different types of polymer. In this paper, a prototype carbon nanotube (CNT) yarn strain sensor with excellent repeatability and stability for in situ structural health monitoring was developed. The CNT yarn was spun directly from CNT arrays, and its electrical resistance increased linearly with tensile strain, making it an ideal strain sensor. It showed consistent piezoresistive behavior under repetitive straining and unloading, and good resistance stability at temperatures ranging from 77 to 373 K. The sensors can be easily embedded into composite structures with minimal invasiveness and weight penalty. We have also demonstrated their ability to monitor crack initiation and propagation.

11.
Materials (Basel) ; 10(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773219

RESUMO

We studied the effects ion beam irradiation on carbon nanotube (CNT) yarns. CNT yarn was fabricated by drawing and spinning CNT sheets from a vertically aligned CNT forest. The yarn was irradiated by 2.5 MeV protons in either vacuum or air. Irradiation in air was achieved by directing the proton beam through a 0.025 mm thick Ti window. Irradiation in vacuum occurred at a pressure of <10-6 torr at room temperature and at an elevated temperature of 600 °C. Tensile testing revealed that CNT yarn irradiated in air increased in tensile strength with increasing proton fluence. For yarn irradiated in vacuum, however, the strength decreased with increasing fluence. We believe that irradiation-induced excitation and trapping/bonding of gas atoms between tubes may play a role for the mechanical property changes.

12.
Sci Rep ; 6: 21014, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880221

RESUMO

It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots.

13.
Nanoscale ; 7(40): 17038-47, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26419855

RESUMO

In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.

14.
Nanoscale ; 7(40): 16744-54, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399497

RESUMO

Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m(-2) exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.

15.
ACS Appl Mater Interfaces ; 6(21): 19135-43, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25275708

RESUMO

Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

16.
Chem Commun (Camb) ; 50(71): 10277-80, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25056154

RESUMO

A self-inhibiting, gradient sulfur structure was designed and developed by the synthesis of a carbon nanofiber-sulphur composite via sulfur vapor deposition method for use as a binder-free sulfur cathode, exhibiting high sulfur loading (2.6 mg cm(-2)) and high sulfur content (65%) with a stable capacity of >700 mA h g(-1).

17.
Nanoscale ; 6(13): 7489-95, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24882561

RESUMO

Silicon is a promising high capacity (4200 mA h g(-1)) anode material for lithium ion batteries but the significant volume change (over 300%) of silicon during lithiation/delithiation remains a challenge in terms of silicon pulverization and solid-electrolyte-interphase (SEI) accumulation in the silicon composite electrode. To alleviate the volumetric change of silicon, we built a flexible and self-supporting carbon-enhanced carbon nanofiber (CNF) structure with vacant chamber to encapsulate Si nanoparticles (vacant Si@CNF@C). This composite was tested directly without any polymer and current collector. The confined vacant chamber allowed the increasing volume of silicon and SEI accumulates to be well retained for a long cycle life. This chamber-confined silicon-carbon nanofiber composite exhibited an improved performance in terms of good cycling performance (620 mA h g(-1)), high coulombic efficiency (99%), and good capacity retention (80%) after 200 cycles. This self-supported silicon-carbon nanofiber structure showed high flexibility and good electrochemical performance for the potential as flexible electrode for lithium-ion batteries.

18.
ACS Appl Mater Interfaces ; 5(21): 10774-81, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24143862

RESUMO

A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.


Assuntos
Anisotropia , Cobre/química , Nanotubos de Carbono/química , Carbono/química , Nanotecnologia , Oxigênio/química , Sais/química , Molhabilidade
19.
Adv Mater ; 25(36): 5109-14, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23907770

RESUMO

Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos de Carbono/química , Silício/química , Técnicas Eletroquímicas , Eletrodos , Íons/química , Nanoestruturas/química
20.
ACS Appl Mater Interfaces ; 3(11): 4180-4, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21985010

RESUMO

To synthesize long and uniform vertically aligned carbon nanotube (VACNT) arrays, it is essential to use catalytic nanoparticles (NPs) with monodisperse sizes and to avoid NP agglomeration at the growth temperature. In this work, VACNT arrays were grown on chemically synthesized Fe(3)O(4) NPs of diameter 6 nm by chemical vapor deposition. Coating the NPs with a thin layer of Al(2)O(3) prior to CNT growth preserves the monodisperse sizes, resulting in uniform, thick and dense VACNT arrays. Comparison with uncoated NPs shows that the Al(2)O(3) coating effectively prevents the catalyst NPs from sintering and coalescing, resulting in improved control over VACNT growth.


Assuntos
Óxido de Alumínio/química , Compostos Férricos/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Catálise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa