Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cereb Cortex ; 33(5): 1925-1940, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35697647

RESUMO

The superior temporal sulcus (STS) is a conserved fold that divides the middle and superior temporal gyri. In humans, there is considerable variation in the shape, folding pattern, lateralization, and depth of the STS that have been reported to be associated with social cognition and linguistic functions. We examined the role that genetic factors play on individual variation in STS morphology in chimpanzees. The surface area and depth of the STS were quantified in sample of 292 captive chimpanzees comprised of two genetically isolated population of individuals. The chimpanzees had been previously genotyped for AVPR1A and KIAA0319, two genes that play a role in social cognition and communication in humans. Single nucleotide polymorphisms in the KIAA0319 and AVPR1A genes were associated with average depth as well as asymmetries in the STS. By contrast, we found no significant effects of these KIA0319 and AVPR1A polymorphism on surface area and depth measures for the central sulcus. The overall findings indicate that genetic factors account for a small to moderate amount of variation in STS morphology in chimpanzees. These findings are discussed in the context of the role of the STS in social cognition and language in humans and their potential evolutionary origins.


Assuntos
Pan troglodytes , Polimorfismo de Nucleotídeo Único , Animais , Humanos , Pan troglodytes/genética , Genótipo , Alelos , Lobo Temporal
2.
PLoS Genet ; 17(5): e1009506, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956822

RESUMO

Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.


Assuntos
Cerebelo/metabolismo , Metilação de DNA , Epigênese Genética , Proteínas ADAM , Animais , Autoantígenos , Proteínas de Transporte , Chade , Ilhas de CpG , Feminino , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macaca mulatta/genética , Masculino , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Pan troglodytes/genética , Fosfoinositídeo Fosfolipase C , Proteínas Serina-Treonina Quinases , Proteínas , Proteínas Associadas SAP90-PSD95 , Especificidade da Espécie , Sítio de Iniciação de Transcrição
3.
Neuropathology ; 43(6): 463-471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37086019

RESUMO

A 57-year-old female chimpanzee presented with a brief history of increasing lethargy and rapidly progressive lower-limb weakness that culminated in loss of use. Postmortem examination revealed no significant gross lesions in the nervous system or other organ systems. Histological analysis revealed round, basophilic to amphophilic polyglucosan bodies (PGBs) in the white and gray matter of the cervical, thoracic, lumbar, and coccygeal regions of spinal cord. Only rare PGBs were observed in forebrain samples. The lesions in the spinal cord were polymorphic, and they were positively stained with hematoxylin, periodic acid Schiff, Alcian blue, toluidine blue, Bielschowsky silver, and Grocott-Gomori methenamine-silver methods, and they were negative for von Kossa and Congo Red stains. Immunohistochemical evaluation revealed reactivity with antibodies to ubiquitin, but they were negative for glial fibrillary acidic protein, neuron-specific enolase, neurofilaments, tau protein, and Aß protein. Electron microscopy revealed non-membrane-bound deposits composed of densely packed filaments within axons and in the extracellular space. Intra-axonal PGBs were associated with disruption of the axonal fine structure and disintegration of the surrounding myelin sheath. These findings are the first description of PGBs linked to neurological dysfunction in a chimpanzee. Clinicopathologically, the disorder resembled adult PGB disease in humans.


Assuntos
Pan troglodytes , Prata , Adulto , Feminino , Animais , Humanos , Idoso , Pessoa de Meia-Idade , Pan troglodytes/metabolismo , Axônios , Glucanos/metabolismo
4.
Nat Immunol ; 11(3): 225-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139986

RESUMO

Autoreactive CD4(+) T cells are involved in the pathogenesis of many autoimmune diseases, but the antigens that stimulate their responses have been difficult to identify and in most cases are not well defined. In the nonobese diabetic (NOD) mouse model of type 1 diabetes, we have identified the peptide WE14 from chromogranin A (ChgA) as the antigen for highly diabetogenic CD4(+) T cell clones. Peptide truncation and extension analysis shows that WE14 bound to the NOD mouse major histocompatibility complex class II molecule I-A(g7) in an atypical manner, occupying only the carboxy-terminal half of the I-A(g7) peptide-binding groove. This finding extends the list of T cell antigens in type 1 diabetes and supports the idea that autoreactive T cells respond to unusually presented self peptides.


Assuntos
Autoantígenos/imunologia , Cromogranina A/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Epitopos/imunologia , Antígenos HLA-A , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Dados de Sequência Molecular
5.
Am J Primatol ; 84(3): e23363, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041228

RESUMO

Studies of the evolutionary relationships among gorilla populations using autosomal and mitochondrial sequences suggest that male-mediated gene flow may have been important in the past, but data on the Y-chromosomal relationships among the gorilla subspecies are limited. Here, we genotyped blood and noninvasively collected fecal samples from 12 captives and 257 wild male gorillas of known origin representing all four subspecies (Gorilla gorilla gorilla, G. g. diehli, G. beringei beringei, and G. b. graueri) at 10 Y-linked microsatellite loci resulting in 102 unique Y-haplotypes for 224 individuals. We found that western lowland gorilla (G. g. gorilla) haplotypes were consistently more diverse than any other subspecies for all measures of diversity and comprised several genetically distinct groups. However, these did not correspond to geographical proximity and some closely related haplotypes were found several hundred kilometers apart. Similarly, our broad sampling of eastern gorillas revealed that mountain (G. b. beringei) and Grauer's (G. b. graueri) gorilla Y-chromosomal haplotypes did not form distinct clusters. These observations suggest structure in the ancestral population with subsequent mixing of differentiated haplotypes by male dispersal for western lowland gorillas, and postisolation migration or incomplete lineage sorting due to short divergence times for eastern gorillas.


Assuntos
Gorilla gorilla , Repetições de Microssatélites , Animais , Evolução Biológica , Geografia , Gorilla gorilla/genética , Haplótipos , Masculino
6.
Pediatr Diabetes ; 22(2): 279-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098212

RESUMO

OBJECTIVE: To determine whether timing of CGM initiation offering low glucose suspend (LGS) affects CGM adherence in children and youth starting insulin pump therapy. METHODS: A 5-site RCT of pump-naïve subjects (aged 5-18 years) with type 1 diabetes (T1D) for at least 1 year compared simultaneous pump and CGM initiation offering LGS vs standard pump therapy with CGM initiation delayed for 6 months. Primary outcome was CGM adherence (hours per 28 days) (MiniMed™ Paradigm™ Veo™ system; CareLink Pro™ software) over 6 months after CGM initiation. Secondary outcome HbA1c was measured centrally. Linear mixed-models and ordinary least squares models were fitted to estimate effect of intervention, and covariates baseline age, T1D duration, HbA1c, gender, ethnicity, hypoglycemia history, clinical site, and association between CGM adherence and HbA1c. RESULTS: The trial randomized 144/152 (95%) eligible subjects. Baseline mean age was 11.5 ± 3.3(SD) years, T1D duration 3.4 ± 3.1 years, and HbA1c 7.9 ± 0.9%. Six months after CGM initiation, adjusted mean difference in CGM adherence was 62.4 hours per 28 days greater in the Simultaneous Group compared to Delayed Group (P = .007). There was no difference in mean HbA1c at 6 months. However, for each 100 hours of CGM use per 28-day period, HbA1c was 0.39% (95% CI 0.10%-0.69%) lower. Higher CGM adherence was associated with reduced time with glucose >10 mmol/L (P < .001). CONCLUSION: CGM adherence was higher after 6 months when initiated at same time as pump therapy compared to starting CGM 6 months after pump therapy. Greater CGM adherence was associated with improved HbA1c.


Assuntos
Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Adolescente , Glicemia/metabolismo , Criança , Pré-Escolar , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Cooperação do Paciente , Fatores de Tempo
7.
Pediatr Diabetes ; 22(2): 288-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33179818

RESUMO

To determine if pump therapy with continuous glucose monitoring offering low glucose suspend (LGS) decreases fear of hypoglycemia among children with type 1 diabetes and their parents. The CGM TIME trial is a multicenter randomized controlled trial that enrolled 144 children with type 1 diabetes for at least 1 year (mean duration 3.4 ± 3.1 years) starting pump therapy (MiniMed™ Veo™, Medtronic Canada). CGM (MiniMed™ Enlite™ sensor) offering LGS was introduced simultaneously or delayed for 6 months. Hypoglycemia Fear Scale (HFS) was completed by children ≥10 years old and all parents, at study entry and 12 months later. Simultaneous and Delayed Group participants were combined for all analyses. Subscale scores were compared with paired t-tests, and individual items with paired Wilcoxon tests. Linear regression examined association with CGM adherence. 121/140 parents and 91/99 children ≥10 years had complete data. Mean Behavior subscale score decreased from 21.1 (SD 5.9) to 17.2 (SD 6.1) (p < .001) for children, and 20.7 (SD 7.5) to 17.4 (7.4) (p < .001) for parents. Mean Worry subscale score decreased from 17.9 (SD 11.9) to 11.9 (SD 11.4) (p < .001) for children, and 23.1 (SD 13.2) to 17.6 (SD 10.4) (p < .001) for parents. Median scores for 10/25 child items and 12/25 parent items were significantly lower at 12 months (p < .001). Linear regression found no association between HFS scores and CGM adherence. Insulin pump therapy with CGM offering LGS significantly reduced fear of hypoglycemia not related to CGM adherence in children with type 1 diabetes and their parents.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Medo , Hipoglicemia/etiologia , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Adolescente , Adulto , Automonitorização da Glicemia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/psicologia , Feminino , Humanos , Hipoglicemia/psicologia , Masculino , Pais/psicologia , Adulto Jovem
8.
Dev Sci ; 24(6): e13114, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34180109

RESUMO

Early life experiences, including separation from caregivers, can result in substantial, persistent effects on neural, behavioral, and physiological systems as is evidenced in a long-standing literature and consistent findings across species, populations, and experimental models. In humans and other animals, differential rearing conditions can affect brain structure and function. We tested for whole brain patterns of morphological difference between 108 chimpanzees reared typically with their mothers (MR; N = 54) and those reared decades ago in a nursery with peers, human caregivers, and environmental enrichment (NR; N = 54). We applied support vector machine (SVM) learning to archival MRI images of chimpanzee brains to test whether we could, with any degree of significant probability, retrospectively classify subjects as MR and NR based on variation in gray matter within the entire brain. We could accurately discriminate MR and NR chimpanzee brains with nearly 70% accuracy. The combined brain regions discriminating the two rearing groups were widespread throughout the cortex. We believe this is the first report using machine language learning as an analytic method for discriminating nonhuman primate brains based on early rearing experiences. In this sense, the approach and findings are novel, and we hope they stimulate application of the technique to studies on neural outcomes associated with early experiences. The findings underscore the potential for infant separation from caregivers to leave a long-term mark on the developing brain.


Assuntos
Idioma , Pan troglodytes , Animais , Encéfalo , Substância Cinzenta , Humanos , Estudos Retrospectivos
9.
J Immunol ; 203(1): 48-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109955

RESUMO

CD4 T cells play a critical role in promoting the development of autoimmunity in type 1 diabetes. The diabetogenic CD4 T cell clone BDC-2.5, originally isolated from a NOD mouse, has been widely used to study the contribution of autoreactive CD4 T cells and relevant Ags to autoimmune diabetes. Recent work from our laboratory has shown that the Ag for BDC-2.5 T cells is a hybrid insulin peptide (2.5HIP) consisting of an insulin C-peptide fragment fused to a peptide from chromogranin A (ChgA) and that endogenous 2.5HIP-reactive T cells are major contributors to autoimmune pathology in NOD mice. The objective of this study was to determine if poly(lactide-co-glycolide) (PLG) nanoparticles (NPs) loaded with the 2.5HIP Ag (2.5HIP-coupled PLG NPs) can tolerize BDC-2.5 T cells. Infusion of 2.5HIP-coupled PLG NPs was found to prevent diabetes in an adoptive transfer model by impairing the ability of BDC-2.5 T cells to produce proinflammatory cytokines through induction of anergy, leading to an increase in the ratio of Foxp3+ regulatory T cells to IFN-γ+ effector T cells. To our knowledge, this work is the first to use a hybrid insulin peptide, or any neoepitope, to re-educate diabetogenic T cells and may have significant implications for the development of an Ag-specific therapy for type 1 diabetes patients.


Assuntos
Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Insulina/metabolismo , Nanopartículas/uso terapêutico , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cromogranina A/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Insulina/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/metabolismo , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética
10.
Mol Biol Evol ; 36(7): 1418-1429, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045220

RESUMO

Serotonin is a neurotransmitter that plays an important role in regulating behavior and personality in humans and other mammals. Polymorphisms in genes coding for the serotonin receptor subtype 1A (HTR1A), the serotonin transporter (SLC6A4), and the serotonin degrading enzyme monoamine oxidase A (MAOA) are associated with anxiety, impulsivity, and neurotic personality in humans. In primates, previous research has largely focused on SLC6A4 and MAOA, with few studies investigating the role of HTR1A polymorphic variation on behavior. Here, we examined variation in the coding region of HTR1A across apes, and genotyped polymorphic coding variation in a sample of 214 chimpanzees with matched measures of personality and behavior. We found evidence for positive selection at three amino acid substitution sites, one in chimpanzees-bonobos (Thr26Ser), one in humans (Phe33Val), and one in orangutans (Ala274Gly). Investigation of the HTR1A coding region in chimpanzees revealed a polymorphic site, where a C/A single nucleotide polymorphism changes a proline to a glutamine in the amino acid sequence (Pro248Gln). The substitution is located in the third intracellular loop of the receptor, a region important for serotonin signal transduction. The derived variant is the major allele in this population (frequency 0.67), and is associated with a reduction in anxiety, decreased rates of male agonistic behavior, and an increase in socio-positive behavior. These results are the first evidence that the HTR1A gene may be involved in regulating social behavior in chimpanzees and encourage further systematic investigation of polymorphic variation in other primate populations with corresponding data on behavior.


Assuntos
Comportamento Agonístico , Ansiedade/genética , Pan troglodytes/genética , Receptor 5-HT1A de Serotonina/genética , Sequência de Aminoácidos , Animais , Feminino , Variação Genética , Masculino , Pan troglodytes/psicologia , Personalidade/genética
11.
J Proteome Res ; 18(3): 814-825, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30585061

RESUMO

We recently discovered hybrid insulin peptides (HIPs) as a novel class of post-translationally modified peptides in murine-derived beta cell tumors, and we demonstrated that these molecules are autoantigens in type 1 diabetes (T1D). A HIP consists of an insulin fragment linked to another secretory granule peptide via a peptide bond. We verified that autoreactive CD4 T cells in both mouse and human autoimmune diabetes recognize these modified peptides. Here, we use mass spectrometric analyses to confirm the presence of HIPs in both mouse and human pancreatic islets. We also present criteria for the confident identification of these peptides. This work supports the hypothesis that HIPs are autoantigens in human T1D and provides a foundation for future efforts to interrogate this previously unknown component of the beta cell proteome.


Assuntos
Autoantígenos/análise , Insulina/química , Ilhotas Pancreáticas/química , Espectrometria de Massas/métodos , Animais , Autoantígenos/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Camundongos , Peptídeos/análise , Peptídeos/química
12.
J Antimicrob Chemother ; 74(9): 2797-2802, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220872

RESUMO

BACKGROUND: Reducing antibiotic prescribing is a priority for health authorities responsible for preventing antimicrobial resistance. Northern Ireland has high rates of antimicrobial use. We implemented a social norm feedback intervention and evaluated its impact. OBJECTIVES: To estimate the size and duration of the effect of a social norm feedback letter to GPs who worked in the 20% of practices with the highest antimicrobial prescribing. METHODS: The letter was sent in October 2017 to 221 GPs in 67 practices. To assess the effect of the intervention, we used a sharp non-parametric regression discontinuity (RD) design, with prescribing rates in the four calendar quarters following the intervention as the outcome variables. RESULTS: In the quarter following the intervention (October to December 2017) there was a change of -25.7 (95% CI = -42.5 to -8.8, P = 0.0028) antibiotic items per 1000 Specific Therapeutic group Age-sex Related Prescribing Units (STAR-PU). At 1 year, the coefficient was -58.7 (95% CI = -116.7 to -0.7, P = 0.047) antibiotic items per 1000 STAR-PU. The greatest change occurred soon after the intervention. Approximately 18900 fewer antibiotic items were prescribed than if the intervention had not been made (1% of Northern Ireland's annual primary care antibiotic prescribing). CONCLUSIONS: A social norm feedback intervention reduced antibiotic prescribing in the intervention practices. The diminishing effect over time suggests the need for more frequent feedback. The RD method allowed measurement of the effectiveness of an intervention that was delivered as part of normal business, without a randomized trial.


Assuntos
Antibacterianos , Prescrições de Medicamentos/estatística & dados numéricos , Prescrição Inadequada/estatística & dados numéricos , Atenção Primária à Saúde , Normas Sociais , Antibacterianos/uso terapêutico , Análise Custo-Benefício , Implementação de Plano de Saúde , Humanos , Padrões de Prática Médica , Atenção Primária à Saúde/normas
13.
J Immunol ; 196(1): 39-43, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608914

RESUMO

T cells reactive to ß cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the ß cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA(+/+) mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromogranina A/genética , Diabetes Mellitus Tipo 1/genética , Transferência Adotiva , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cromogranina A/imunologia , Diabetes Mellitus Tipo 1/imunologia , Citometria de Fluxo , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Repetições de Microssatélites/genética
14.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398555

RESUMO

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Assuntos
Evolução Molecular , Especiação Genética , Genoma/genética , Gorilla gorilla/genética , Animais , Feminino , Regulação da Expressão Gênica , Variação Genética/genética , Genômica , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Filogenia , Pongo/genética , Proteínas/genética , Alinhamento de Sequência , Especificidade da Espécie , Transcrição Gênica
15.
Am J Primatol ; 80(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405330

RESUMO

Genetic analyses of parentage sometimes reveal that "socially monogamous" (pair-living) species do not reside in strict family groups. Circumstances such as adult turnovers and extra-pair copulations, among others, may result in non-nuclear families. These genetic relationships within groups have implications for interpreting social behaviors. Red-bellied lemurs (Eulemur rubriventer) live in groups generally comprising an adult male-female pair plus immatures, and early genetic analyses of parentage in a relatively small sample suggested they mate monogamously. However, previous research on this taxon has also identified scenarios in which non-nuclear families might result, such as adult turnovers. To assess the potential occurrence of non-nuclear families in this "socially monogamous" taxon, as well as the social conditions under which they might occur, we combined behavioral observations of wild red-bellied lemurs in Ranomafana National Park with genetic parentage analysis of immatures from 17 groups. We found that the majority of groups (75%) represented nuclear family groups. However, 25% of groups represented non-nuclear families at some point during the study. The social factors that resulted in non-nuclear families were varied and included at least one adult turnover, and potentially delayed female dispersals and extra-pair copulations. Our results suggest that red-bellied lemurs are generally reproductively monogamous, with only limited evidence that non-nuclear families result from non-monogamous reproduction. However, similar to other pair-living primates, red-bellied lemurs appear to exhibit flexibility in their social organization and mating strategies. Multiple lines of evidence should be considered when inferring parent-offspring relationships within pair-living groups.


Assuntos
Lemur/genética , Lemur/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Madagáscar , Masculino , Ligação do Par , Comportamento Social
16.
J Autoimmun ; 78: 11-18, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27802879

RESUMO

BDC-6.9, a diabetogenic CD4 T cell clone isolated from a non-obese diabetic (NOD) mouse, responds to pancreatic islet cells from NOD but not BALB/c mice. We recently reported that a hybrid insulin peptide (HIP), 6.9HIP, formed by linkage of an insulin C-peptide fragment and a fragment of islet amyloid polypeptide (IAPP), is the antigen for BDC-6.9. We report here that the core 12-mer peptide from 6.9HIP, centered on the hybrid peptide junction, is also highly antigenic for BDC-6.9. In agreement with the observation that BALB/c islet cells fail to stimulate the T cell clone, a single amino acid difference in the BALB/c IAPP sequence renders the BALB/c version of the HIP only weakly antigenic. Mutant peptide analysis indicates that each parent molecule-insulin C-peptide and IAPP-donates residues critical for antigenicity. Through mass spectrometric analysis, we determine the distribution of naturally occurring 6.9HIP across chromatographic fractions of proteins from pancreatic beta cells. This distribution closely matches the profile of the T cell response to the fractions, confirming that 6.9HIP is the endogenous islet antigen for the clone. Using a new MHC II tetramer reagent, 6.9HIP-tet, we show that T cells specific for the 6.9HIP peptide are prevalent in the pancreas of diabetic NOD mice. Further study of HIPs and HIP-reactive T cells could yield valuable insight into key factors driving progression to diabetes and thereby inform efforts to prevent or reverse this disease.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Insulina/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/imunologia , Sequência de Aminoácidos , Animais , Autoantígenos/química , Peptídeo C/química , Peptídeo C/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Epitopos de Linfócito T/química , Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout
17.
Biol Lett ; 13(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275167

RESUMO

Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys.


Assuntos
Visão de Cores/genética , Opsinas/genética , Strepsirhini/genética , Animais , Ecossistema , Genes Ligados ao Cromossomo X , Polimorfismo Genético , Análise de Sequência de Proteína
18.
J Immunol ; 194(2): 522-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505281

RESUMO

In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention because immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration, we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune NOD mice. Using both intravital and explanted two-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was Ag dependent and due, at least in part, to Ag recognition through sustained interactions with CD11c(+) APCs. As islet infiltration progressed, T cell motility became Ag independent, with a loss of T cell arrest and sustained interactions with CD11c(+) APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression.


Assuntos
Autoantígenos/imunologia , Movimento Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Autoantígenos/genética , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Movimento Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Linfócitos T/patologia
19.
Am J Phys Anthropol ; 161(1): 181-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393125

RESUMO

OBJECTIVES: We explored whether variation in the sweet taste receptor protein T1R3 in primates could contribute to differences in sweet taste repertoire among species, potentially reflecting coevolution with local plants. Specifically, we examined which primates are likely to be sweet "tasters" of brazzein, a protein found in the fruit of the African plant Pentadiplandra brazzeana that tastes intensely sweet to humans, but provides little energy. Sweet proteins like brazzein are thought to mimic the taste of sugars to entice seed dispersers. We examined the evolution of T1R3 and assessed whether primates are likely "deceived" by such biochemical mimicry. METHODS: Using published and new sequence data for TAS1R3, we characterized 57 primates and other mammals at the two amino acid sites necessary to taste brazzein to determine which species are tasters. We further used dN/dS-based methods to look for statistical evidence of accelerated evolution in this protein across primate lineages. RESULTS: The taster genotype is shared across most catarrhines, suggesting that most African primates can be "tricked" into eating and dispersing P. brazzeana's seeds for little caloric gain. Western gorillas (Gorilla gorilla), however, exhibit derived mutations at the two brazzein-critical positions, and although fruit is a substantial portion of the western gorilla diet, they have not been observed to eat P. brazzeana. Our analyses of protein evolution found no signature of positive selection on TAS1R3 along the gorilla lineage. DISCUSSION: We propose that the gorilla-specific mutations at the TAS1R3 locus encoding T1R3 could be a counter-adaptation to the false sweet signal of brazzein.


Assuntos
Evolução Biológica , Gorilla gorilla , Magnoliopsida/fisiologia , Proteínas de Plantas/fisiologia , Receptores Acoplados a Proteínas G , Paladar , Animais , Antropologia Física , Gorilla gorilla/genética , Gorilla gorilla/fisiologia , Humanos , Primatas/genética , Primatas/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Dispersão de Sementes , Paladar/genética , Paladar/fisiologia
20.
Am J Primatol ; 78(12): 1304-1315, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27434275

RESUMO

Producing single versus multiple births has important life history trade-offs, including the potential benefits and risks of sharing a common in utero environment. Sex hormones can diffuse through amniotic fluid and fetal membranes, and females with male littermates risk exposure to high levels of fetal testosterone, which are shown to have masculinizing effects and negative fitness consequences in many mammals. Whereas most primates give birth to single offspring, several New World monkey and strepsirrhine species regularly give birth to small litters. We examined whether neonatal testosterone exposure might be detrimental to females in mixed-sex litters by compiling data from long-term breeding records for seven primate species (Saguinus oedipus; Varecia variegata, Varecia rubra, Microcebus murinis, Mirza coquereli, Cheirogaleus medius, Galago moholi). Litter sex ratios did not differ from the expected 1:2:1 (MM:MF:FF for twins) and 1:2:2:1 (MMM:MMF:MFF:FFF for triplets). Measures of reproductive success, including female survivorship, offspring-survivorship, and inter-birth interval, did not differ between females born in mixed-sex versus all-female litters, indicating that litter-producing non-human primates, unlike humans and rodents, show no signs of detrimental effects from androgen exposure in mixed sex litters. Although we found no evidence for CYP19A1 gene duplications-a hypothesized mechanism for coping with androgen exposure-aromatase protein evolution shows patterns of convergence among litter-producing taxa. That some primates have effectively found a way to circumvent a major cost of multiple births has implications for understanding variation in litter size and life history strategies across mammals.


Assuntos
Androgênios/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Primatas/fisiologia , Reprodução , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Mamíferos , Gravidez , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa