Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Phys Chem A ; 123(10): 2107-2113, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30786712

RESUMO

The role of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) is a key question in astrophysics. Moreover, our limited understanding of the plasma-driven processes of PAHs in the ISM motivates the present study on naphthalene as a model compound. In this work, a mass spectrometric characterization of the positive and negative ionic species in a naphthalene plasma was carried out. According to our findings, the main naphthalene dissociation channels upon electronic excitation proceed through hydrogen or acetylene loss. In addition, we report experimental evidence of the hydrogen abstraction-acetylene addition mechanism taking place under plasma conditions, which contributes to our understanding of the growth of PAHs. Regarding negative ions, species belonging to the astrochemically relevant family of polyynyl anions were detected, i.e., C4H- and C6H-. We postulate that the latter could be formed in a "top-down" chemistry as fragments of PAHs. Finally, our results show that negative ions add to neutral naphthalene molecules yielding larger anions, which suggests that negatively charged species may also play a role in the growth of PAHs.

2.
Analyst ; 139(21): 5430-8, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25142127

RESUMO

Results are presented on the characterisation and optimisation of a non-thermal atmospheric pressure micro-plasma ion source used for ambient mass spectrometry imaging. The geometry of the experiment is optimised to produce the most intense and stable ion signals. Signal stabilities (relative standard deviation) of 2.3-6.5% are achieved for total ion current measurements from chromatograms. Parameters are utilised to achieve MS imaging by raster scanning of PTFE/glass samples with a spatial resolution of 147 ± 31 µm. A systematic study of resolution as a function of acquisition parameters was also undertaken to underpin future technique development. Mass spectra are obtained from PTFE/glass sample edges in negative ion mode and used to construct images to calculate the spatial resolution. Images are constructed using the intensity variation of the dominant ion observed in the PTFE spectrum. Mass spectra originating from the polymer are dominated by three series of ions in a m/z spectral window from 200-500 Da. These ions are each separated by 50 Da and have the chemical formula [C2F + [CF2]n](-), [CF + [CF2]n + O](-) and [CF + [CF2]n + O3](-). The mechanism for the generation of these ions appears to be a polymer chain scission followed by ionisation by atmospheric ion adduction. Positive and negative ion mode mass spectra of personal care products, amino acids and pharmaceuticals, dominated by the proton abstracted/protonated molecular ion, highlight the potential areas of application for such a device. Further to this end a mass spectral image of cardamom seeds, constructed using the variation in intensity of possible fragments of the 1,8-cineole molecule, is included to reveal the potential application to the imaging of foods and other biological materials.


Assuntos
Espectrometria de Massas/métodos , Gases em Plasma
3.
Langmuir ; 27(19): 11943-50, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21863814

RESUMO

New data shed light on the mechanisms of film growth from low power, low pressure plasmas of organic compounds. These data rebalance the widely held view that plasma polymer formation is due to radical/neutral reactions only and that ions play no direct role in contributing mass at the surface. Ion reactions are shown to play an important role in both the plasma phase and at the surface. The mass deposition rate and ion flux in continuous wave hexamethyl disiloxane (HMDSO) plasmas have been studied as a function of pressure and applied RF power. Both the deposition rate and ion flux were shown to increase with applied power; however, the deposition rate increased with pressure while the ion flux decreased. Positive ion mass spectrometry of the plasma phase demonstrates that the dominant ionic species is the (HMDSO-CH(3))(+) ion at m/z 147, but significant fragmentation and subsequent oligomerization was also observed. Chemical analysis of the deposits by X-ray photoelectron spectroscopy and secondary ion mass spectrometry show that the deposits were consistent with deposits reported by previous workers grown from plasma and hyperthermal (HMDSO-CH(3))(+) ions. Increasing coordination of silicon with oxygen in the plasma deposits reveals the role of ions in the growth of plasma polymers. Comparing the calculated film thicknesses after a fixed total fluence of 1.5 × 10(19) ions/m(2) to results for hyperthermal ions shows that ions can contribute significantly to the total absorbed mass in the deposits.


Assuntos
Membranas Artificiais , Siloxanas/química , Íons/química , Espectrometria de Massas , Estrutura Molecular , Espectrometria de Massa de Íon Secundário , Espectrofotometria , Raios X
4.
Biointerphases ; 15(6): 061007, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218222

RESUMO

Plasma polymerization of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) yields thin films containing stable nitroxide radicals that have properties analogous to that of nitric oxide (NO) without short lifetimes. This property gives TEMPO films a wide variety of potential applications. Typically, control of the final film chemistry is difficult and the plasma discharge conditions must be tailored to in order to maximize the retention of these nitroxide groups during the polymerization and deposition process. In this study, plasma diagnostics and surface analysis of the deposited films were carried out to determine the optimal plasma conditions for the retention of nitroxide groups. These techniques included energy-resolved mass spectrometry, heated planar probe ion current measurements, deposition rate measurements, and x-ray photoelectron spectroscopy (XPS). Results show that operating the plasma with a combination of low input powers and high pressures produces a collisional discharge in which fragmentation of the TEMPO molecule is suppressed, leading to good retention of nitroxide groups. Ion energy distribution functions and quartz crystal microbalance measurements support the soft landing theory of ion deposition on the substrate within this γ-mode, in which the flux of low energy, soft landed ions form the primary contribution to film growth. XPS analysis of deposited polymers shows 75.7% retention of N-O groups in the polymer films deposited in a 25 Pa 5 W discharge.


Assuntos
Óxidos N-Cíclicos/química , Gases em Plasma/química , Polímeros/química , Espectrometria de Massas , Óxidos de Nitrogênio/química , Espectroscopia Fotoeletrônica , Polimerização , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 12(11): 13481-13493, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32084318

RESUMO

Graphene is a highly desirable material for a variety of applications; in the case of nanocomposites, it can be functionalized and added as a nanofiller to alter the ultimate product properties, such as tensile strength. However, often the material properties of the functionalized graphene and the location of any chemical species, attached via different functionalization processes, are not known. Thus, it is not necessarily understood why improvements in product performance are achieved, which hinders the rate of product development. Here, a commercially available powder containing few-layer graphene (FLG) flakes is characterized before and after plasma or chemical functionalization with either nitrogen or oxygen species. A range of measurement techniques, including tip-enhanced Raman spectroscopy (TERS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and NanoSIMS, were used to examine the physical and chemical changes in the FLG material at both the micro- and nanoscale. This is the first reported TERS imaging of commercially available FLG flakes of submicron lateral size, revealing the location of the defects (edge versus basal plane) and variations in the level of functionalization. Graphene-polymer composites were then produced, and the dispersion of the graphitic material in the matrix was visualized using ToF-SIMS. Finally, mechanical testing of the composites demonstrated that the final product performance could be enhanced but differed depending on the properties of the original graphitic material.

6.
J Phys Chem B ; 113(25): 8487-94, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19485403

RESUMO

Plasma species that form plasma polymer deposits readily penetrate through small openings and are therefore well suited to coat the interior of porous objects. Here, we show how the size of the cross section of square channels influences the penetration of active species from a hexane plasma and how it affects the formation of surface chemical gradients in the interior of these model pores. WCA mapping and ToF-SIMS imaging are used to visualize the plasma polymer deposit in the interior of the model pores and demonstrate that a strong dependence of the wettability gradient profile only exists up to a channel cross section of about 1 mm. XPS data allow us to calculate a deposition rate of plasma polymerized hexane (ppHex) at discrete positions on the surface and show that the deposition rate of ppHex is reduced by the presence of the mask up to a distance of 16 mm in advance of the channel opening. A strong dependence of the ppHex deposition rate on the cross-section of the channels is found within the first 2 mm in front of the pore opening. An estimation of the sheath thickness suggests that this effect can be attributed to the plasma sheath that perturbs the plasma in front of the pores. Plasma mass spectrometry allows us to identify the nature of the plasma species penetrating from the plasma through the pores and shows that no negatively charged ions are able to penetrate through the small channels. Neutral and positively charged species penetrate several millimeters down the channels and both species are therefore likely to contribute to the formation of the deposit on the sample. In addition, the formation of positively charged higher molecular mass hexane fragments is observed in the gas phase, demonstrating the likelihood of neutral-positive reactions in the plasma.


Assuntos
Polímeros/química , Hexanos/química , Espectrometria de Massas , Modelos Químicos , Porosidade , Análise Espectral , Água/química
7.
Biomaterials ; 29(2): 172-84, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17949809

RESUMO

This paper reports on the application of surface chemical gradients to study mammalian cell interactions with synthetic surfaces and investigates if the cell response on certain parts of the gradient is the same as that on uniform surfaces of equivalent chemistry. The gradients, formed using a diffusion-controlled plasma polymerisation technique, were fabricated such that cell response to a large range of different chemistries on a single sample could be investigated. Surface chemical gradients from hydrophobic plasma polymerised hexane (ppHex) to a more hydrophilic plasma polymerised allylamine (ppAAm), previously used to control cell density within 3D tissue-engineering scaffolds, were formed on glass coverslips. Surface characterisation was carried out to determine water contact angles (WCA), elemental composition, coating thickness and topography of the chemical gradients. Cell response was assessed following culture of 3T3 fibroblasts on both steep and shallow gradients. Fibroblasts adhered and proliferated preferentially on ppAAm (WCA approximately 60 degrees ) showing a gradual decreasing cell density towards the hydrophobic ppHex (WCA approximately 93 degrees ). Experiments on a uniform ppAAm surface revealed that there was a significant difference in cell density when compared to the gradient samples. The initial number of cells that adhered to the surface was confirmed as the difference between the uniform and graduated ppAAm samples, and it is assumed that this difference relates to different cell-cell signalling processes and/or greater protein production from surrounding cells on these two samples formats.


Assuntos
Polímeros/química , Engenharia Tecidual/instrumentação , Alilamina/química , Animais , Proliferação de Células , Hexanos/química , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Análise Espectral , Propriedades de Superfície
8.
J Phys Chem B ; 112(13): 3938-47, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18327932

RESUMO

By use of time and energy-resolved mass spectrometry, negative ions with masses ranging from m/z = 1-287 amu have been observed in the afterglow of a low-pressure (10 mTorr) pulsed acrylic acid polymerizing plasma. The most intense peaks, seen at m/z = 71, 143, 215, and 287, are assigned to the dehydrogenated oligomer of the form [nM-H](-) for n = 1, 2, 3, and 4, respectively. The results strongly suggest that both m/z = 71 and 143 ions are produced in the on period of the pulse cycle (0.1 ms duration), with higher masses m/z = 215 and 287 being produced by neutral ion chemistry in the off period (up to 40 ms in duration). The increase in the intensity of the [3M-H](-) and [4M-H](-) peaks in the off period is accompanied by a rapid fall in the concentration of [M-H]- ions and electrons, the latter decreasing from approximately 10(15) m(-3) to zero within 150 micros. Deep into the afterglow, Langmuir probe measurements show that the charge species only consist of positive and negative ions, present at equal concentrations in excess of approximately 10(14) m(-3) even after 10 ms that is, the plasma is wholly electron free. To describe the growth of large negative ions a number of possible ion-neutral chemical pathways have been postulated, and a calculation of the ambipolar diffusion rates to the walls suggests that, in the off period, the positive and negative ion contribution to the deposition rate is small ( approximately 1%) compared to the net total deposition rate. However, the observations do indicate that it may be necessary to update models of film growth in the pulsed plasma polymerization of acrylic acid to account for negative ions.


Assuntos
Acrilatos/síntese química , Acrilatos/química , Elétrons , Íons/química , Medições Luminescentes , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Pressão , Fatores de Tempo
9.
J Mass Spectrom ; 53(3): 214-222, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29212136

RESUMO

The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed. The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng). Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation.

10.
J Phys Chem B ; 111(30): 8720-2, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17616121

RESUMO

There is much scientific and commercial interest in plasma polymers to modify surface chemistry. To date, only neutral and positively charged species have been detected in the commonly applied acrylic acid plasma. Using time-averaged negative ion mass spectrometry, we demonstrate that large, negatively charged species exist in the plasma, contrary to previous studies that detected only neutral and positive species. We briefly outline how negative molecules may contribute to the deposition of plasma polymer in the acrylic acid system.


Assuntos
Acrilatos/química , Polímeros , Íons , Estrutura Molecular , Propriedades de Superfície , Temperatura
11.
J Phys Chem B ; 111(13): 3419-29, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17388498

RESUMO

Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion species in the acrylic acid plasma during both the on- and the off- periods. The relative intensities of oligomeric species of the type [nM + H]+ as large as n = 3 were observed to increase in the off-time suggesting vapor phase polymerization after power input to the plasma was ceased. The energy distribution functions of these ions demonstrated that they were produced in the plasma in both the on- and the off-times. This remarkable observation contradicts the assumptions usually made when speculating on pulsed plasma that ions have very short lifetimes, although it is anticipated that radicals still have significantly longer lifetimes, estimated from calculation to be in excess of 1 ms. The increase in average positive ion mass during the off-period can be related to the lower mobility of the heavier components, reducing their relative loss to surfaces, and the polymer chain growth in the gas phase due to the ion-neutral collisions. The implications of these observations are discussed in light of polymerization mechanisms proposed from continuous acrylic acid and millisecond pulsing plasmas.

12.
J Mater Chem B ; 5(13): 2500-2510, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264556

RESUMO

The linker-free covalent immobilization of polymers on surfaces has the potential to impart new properties and functions to surfaces for a wide range of applications. However, most current methods for the production of these surfaces involve multiple chemical steps and do not have a high degree of control over the chemical functionalities at the surface. A comprehensive study detailing the facile two-step covalent grafting of the antimicrobial peptide nisin onto polystyrene surfaces is reported. Functionalization is achieved using an atmospheric pressure plasma jet, and the reaction is monitored and compared with a standard wet chemical functionalization approach using a variety of analytical techniques. The reactive species produced by the atmospheric pressure plasma jet were analyzed by mass spectrometry and optical emission spectroscopy. The surface chemistry and topography of the functionalized surfaces were determined using contact angle measurements, Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy and atomic force microscopy respectively. Following surface analysis, the antimicrobial efficacy of the covalently grafted nisin against two major food borne pathogens (Staphylococcus aureus and Listeria monocytogenes) was assessed at two different pHs. The results demonstrated that a post-plasma treatment step after nisin deposition is required to covalently graft the peptide onto the surface. The covalent immobilization of nisin resulted in a significant reduction in bacterial counts within a short 30 minutes contact time. These surfaces were also significantly more antimicrobial compared to those prepared via a more traditional wet chemical approach indicating that the reported method could be a less expensive and less time consuming alternative.

13.
J Phys Chem B ; 109(8): 3207-11, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851342

RESUMO

Using a novel RF biasing technique, the energy of positive ions at a depositing substrate is controlled, independently of other parameters. Under bias conditions which gave the maximum and minimum ion energies, plasmas of propionic and acrylic acid were investigated using mass spectrometry, an ion flux probe, quartz crystal microbalance, and X-ray photoelectron spectroscopy (XPS). For both compounds investigated, the ion energy affects the deposition rate but leaves the neutral gas-phase chemistry and positive ion fluxes unchanged. The chemistry of the polymer deposit for acrylic acid is unaffected by the change in ion energy, but the chemistry of the propionic acid plasma polymer changes markedly. We argue that the results presented are consistent with the hypothesis that, under the plasma conditions explored, the carbon-carbon double bond present in acrylic acid plays a significant role in the formation of the polymer. Conversely, the absence of this bond in propionic acid leads us to conclude that positive ions contribute significantly to film formation for this compound.

14.
J Phys Chem B ; 109(47): 22085-8, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16853872

RESUMO

Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.


Assuntos
Argônio , Íons Pesados , Oxigênio , Polietileno/química , Polietileno/efeitos da radiação , Sensibilidade e Especificidade , Espectrofotometria , Propriedades de Superfície , Raios X
15.
Biomicrofluidics ; 9(1): 014124, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25759757

RESUMO

Spatially varied surface treatment of a fluorescently labeled Bovine Serum Albumin (BSA) protein, on the walls of a closed (sealed) microchannel is achieved via a well-defined gradient in plasma intensity. The microchips comprised a microchannel positioned in-between two microelectrodes (embedded in the chip) with a variable electrode separation along the length of the channel. The channel and electrodes were 50 µm and 100 µm wide, respectively, 50 µm deep, and adjacent to the channel for a length of 18 mm. The electrode separation distance was varied linearly from 50 µm at one end of the channel to a maximum distance of 150, 300, 500, or 1000 µm to generate a gradient in helium plasma intensity. Plasma ignition was achieved at a helium flow rate of 2.5 ml/min, 8.5 kVpk-pk, and 10 kHz. It is shown that the plasma intensity decreases with increasing electrode separation and is directly related to the residual amount of BSA left after the treatment. The plasma intensity and surface protein gradient, for the different electrode gradients studied, collapse onto master curves when plotted against electrode separation. This precise spatial control is expected to enable the surface protein gradient to be tuned for a range of applications, including high-throughput screening and cell-biomolecule-biomaterial interactions.

16.
Chem Commun (Camb) ; (3): 348-9, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12613606

RESUMO

A novel technique, which allows the importance of ion energy in plasma polymer film growth to be investigated, without perturbation of any other plasma parameter (particle densities or temperatures) or, in principle, perturbation of particle (neutral or ion) fluxes is applied in the plasma polymerisation of acrylic acid and new insight into polymer formation is gleaned.

17.
J Am Soc Mass Spectrom ; 25(9): 1528-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24894843

RESUMO

Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.


Assuntos
Íons/química , Gases em Plasma/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Desenho de Equipamento , Temperatura
18.
Obesity (Silver Spring) ; 19(9): 1813-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21681223

RESUMO

Bioelectric impedance analyses (BIA) provides a valid and reliable measure of body composition in field, clinical, and research settings if standard protocol procedures are followed, and population-specific equations are available and utilized. The objective of this study was to create and cross-validate a new BIA body composition equation with representative healthy weight (HW), overweight (OW), and obese (OB) young children. Participants were 436 children who were 5-11 years of age. Dual-energy absorptiometry fat-free mass (FFM) was used as the criterion measure and a single frequency tetra-polar BIA device was used to create the new BIA equation. The new BIA equation explained 95.2% of the variance in FFM with no statistical shrinkage upon cross-validation. The use of this equation may help to identify effective intervention strategies to prevent or combat childhood obesity, and may assist in additional conditions or treatments where information concerning body composition measures would provide greater accuracy and sensitivity measures for preventing or combating disease.


Assuntos
Composição Corporal , Pesos e Medidas Corporais/métodos , Absorciometria de Fóton , Algoritmos , Índice de Massa Corporal , Criança , Pré-Escolar , Impedância Elétrica , Feminino , Humanos , Masculino , Obesidade/patologia , Sobrepeso/patologia , Reprodutibilidade dos Testes
19.
Lab Chip ; 11(3): 541-4, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21031179

RESUMO

A rapid, high-precision method for localised plasma-treatment of bonded PDMS microchannels is demonstrated. Patterned electrodes were prepared by injection of molten gallium into preformed microchannel guides. The electrode guides were prepared without any additional fabrication steps compared to conventional microchannel fabrication. Alignment of the "injected" electrodes is precisely controlled by the photomask design, rather than positioning accuracy of alignment tools. Surface modification is detected using a fluorescent dye (Rhodamine B), revealing a well-defined micropattern with regions less than 100 µm along the length of the microchannel.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa