Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Brain ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633260

RESUMO

Huntington's disease (HD) results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mutant huntingtin (mHTT) to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by JNK kinases and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNK kinases. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem HD patients. Collectively, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in HD.

2.
BMC Health Serv Res ; 23(1): 1392, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082272

RESUMO

BACKGROUND: Health care has the intrinsic obligation to preserve health. This concept is also applicable to planetary health. Nitrous oxide (N2O) lacks clinical indications in modern anaesthesia, while it is a high-potential greenhouse gas. Its seemingly low cost contrasts with the consequential externalised socio-economic costs due to its contribution to the climate crisis, which is approximately €698 per emitted ton of CO2 equivalent. This difference can be internalised through emission taxation. In this study, we aim to evaluate how much N2O - total amount and converted to CO2 equivalent - is used at a German university hospital and compare this amount to that used at European hospitals. Furthermore, how the cost of N2O usage changes under different emission taxation scenarios is calculated. METHODS: This trial was a retrospective observational study at a German university hospital with approximately 1,250 beds between 2016 and 2020. Additionally, five European hospitals from the Health Care Without Harm Network were used for comparison from a European perspective. The main outcome parameters were the amount of N2O used, in total and converted to CO2 equivalent, and the total cost at emission taxation of €0, €25, €55 and €698 per ton CO2 equivalent. RESULTS: At the peak, 2,104 tCO2 equivalent in N2O was emitted in 2019. The actual cost was €14,040 in this year, while the corresponding socio-economic damage due to the climate crisis was almost €1.5 million. Other European hospitals showed comparable amounts of emissions. CONCLUSIONS: The annual peak amount of emitted N2O corresponded to the total annual greenhouse gas emission of 188 people in Germany. To achieve a drastic reduction in use, the abandonment of recommendations by anaesthesiologic societies appears necessary, in addition to an internalisation of future costs via emission taxation, which will cause inadequate cost for a medication without relevant benefit or indication. To that end, the inclusion of health sector emissions within national or international greenhouse gas taxation, for example, the European Union Emissions Trading System, appears necessary and expedient in view of the urgent need to address the ecological transformation. TRIAL REGISTRATION: The trial was registered with the German Clinical Trials Register, identifier DRKS00024973 on 12/04/2021.


Assuntos
Anestesia , Gases de Efeito Estufa , Humanos , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise , Análise Custo-Benefício , Hospitais , Impostos
3.
J Neurosci ; 41(45): 9431-9451, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607969

RESUMO

Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, ß, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1ß, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.


Assuntos
Transporte Axonal/efeitos dos fármacos , Demência Frontotemporal , Neurônios/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas tau/farmacologia , Animais , Células Cultivadas , Decapodiformes , Feminino , Hipocampo , Humanos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Ratos , Proteínas tau/genética
4.
Hum Mol Genet ; 26(12): 2321-2334, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398512

RESUMO

Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.


Assuntos
Adenosina Trifosfatases/genética , Transporte Axonal/genética , Adenosina Trifosfatases/metabolismo , Animais , Transporte Axonal/fisiologia , Caseína Quinase II/metabolismo , Células Cultivadas , Decapodiformes , Modelos Animais de Doenças , Fibroblastos , Humanos , Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Isoformas de Proteínas/genética , Transporte Proteico/fisiologia , Ratos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Espastina
5.
MAGMA ; 32(4): 461-471, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30771034

RESUMO

OBJECTIVE: The goal of this work is to study the changes in white matter integrity in R6/2, a well-established animal model of Huntington's disease (HD) that are captured by ex vivo diffusion imaging (DTI) using a high field MRI (17.6 T). MATERIALS AND METHODS: DTI and continuous time random walk (CTRW) models were used to fit changes in the diffusion-weighted signal intensity in the corpus callosum of controls and in R6/2 mice. RESULTS: A significant 13% decrease in fractional anisotropy, a 7% increase in axial diffusion, and a 33% increase in radial diffusion were observed between R6/2 and control mice. No change was observed in the CTRW beta parameter, but a significant decrease in the alpha parameter (- 21%) was measured. Histological analysis of the corpus callosum showed a decrease in axonal organization, myelin alterations, and astrogliosis. Electron microscopy studies demonstrated ultrastructural changes in degenerating axons, such as an increase in tortuosity in the R6/2 mice. CONCLUSIONS: DTI and CTRW diffusion models display quantitative changes associated with the microstructural alterations observed in the corpus callosum of the R6/2 mice. The observed increase in the diffusivity and decrease in the alpha CTRW parameter providing support for the use of these diffusion models for non-invasive detection of white matter alterations in HD.


Assuntos
Axônios , Imagem de Tensor de Difusão , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Anisotropia , Corpo Caloso/diagnóstico por imagem , Feminino , Masculino , Camundongos , Microscopia de Fluorescência , Bainha de Mielina , Substância Branca/diagnóstico por imagem
6.
Adv Exp Med Biol ; 1184: 81-95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096030

RESUMO

Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau's normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer's disease and other tauopathies and various mechanisms have been proposed for regulation of fast axonal transport by tau. Post-translational modifications of tau including phosphorylation at specific sites, FTDP-17 point mutations, and oligomerization, confer upon tau a toxic effect on fast axonal transport. Consistent with the well-established dependence of axons on fast axonal transport, these disease-related modifications are closely associated temporally and spatially with axonal degeneration in the early disease stages. These factors position tau as a potentially critical factor mediating the disruption of fast axonal transport that precedes synaptic dysfunction and axonal degeneration at later disease stages. In this chapter, we review the evidence that tau affects fast axonal transport and examine several potential mechanisms proposed to underlie this toxicity.


Assuntos
Transporte Axonal , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Fosforilação , Proteínas tau/química
7.
Neurobiol Dis ; 105: 273-282, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28411118

RESUMO

Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.


Assuntos
Transporte Axonal/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais/fisiologia
8.
Hum Mol Genet ; 24(18): 5285-98, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123489

RESUMO

Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo, we bred transgenic YFP(J16) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP(J16) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity.


Assuntos
Axônios/patologia , Encéfalo/patologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Idoso , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Expressão Gênica , Genes Reporter , Humanos , Doença de Huntington/diagnóstico , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Índice de Gravidade de Doença
9.
Methods ; 74: 54-64, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25448299

RESUMO

The current era of large-scale biology is characterized by a fast-paced growth in the number of sequenced genomes and, consequently, by a multitude of identified proteins whose function has yet to be determined. Simultaneously, any known or postulated information concerning genes and proteins is part of the ever-growing published scientific literature, which is expanding at a rate of over a million new publications per year. Computational tools that attempt to automatically predict and annotate protein characteristics, such as function and localization patterns, are being developed along with systems that aim to support the process via text mining. Most work on protein characterization focuses on features derived directly from protein sequence data. Protein-related work that does aim to utilize the literature typically concentrates on extracting specific facts (e.g., protein interactions) from text. In the past few years we have taken a different route, treating the literature as a source of text-based features, which can be employed just as sequence-based protein-features were used in earlier work, for predicting protein subcellular location and possibly also function. We discuss here in detail the overall approach, along with results from work we have done in this area demonstrating the value of this method and its potential use.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Animais , Biologia Computacional/tendências , Mineração de Dados/tendências , Bases de Dados de Proteínas/tendências , Humanos , Proteínas/genética
10.
Proc Natl Acad Sci U S A ; 110(14): 5428-33, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509252

RESUMO

Mutant human Cu/Zn superoxide dismutase 1 (SOD1) is associated with motor neuron toxicity and death in an inherited form of amyotrophic lateral sclerosis (ALS; Lou Gehrig disease). One aspect of toxicity in motor neurons involves diminished fast axonal transport, observed both in transgenic mice and, more recently, in axoplasm isolated from squid giant axons. The latter effect appears to be directly mediated by misfolded SOD1, whose addition activates phosphorylation of p38 MAPK and phosphorylation of kinesin. Here, we observe that several different oligomeric states of a fusion protein, comprising ALS-associated human G85R SOD1 joined with yellow fluorescent protein (G85R SOD1YFP), which produces ALS in transgenic mice, inhibited anterograde transport when added to squid axoplasm. Inhibition was blocked both by an apoptosis signal-regulating kinase 1 (ASK1; MAPKKK) inhibitor and by a p38 inhibitor, indicating the transport defect is mediated through the MAPK cascade. In further incubations, we observed that addition of the mammalian molecular chaperone Hsc70, abundantly associated with G85R SOD1YFP in spinal cord of transgenic mice, exerted partial correction of the transport defect, associated with diminished phosphorylation of p38. Most striking, the addition of the molecular chaperone Hsp110, in a concentration substoichiometric to the mutant SOD1 protein, completely rescued both the transport defect and the phosphorylation of p38. Hsp110 has been demonstrated to act as a nucleotide exchange factor for Hsc70 and, more recently, to be able to cooperate with it to mediate protein disaggregation. We speculate that it can cooperate with endogenous squid Hsp(c)70 to mediate binding and/or disaggregation of mutant SOD1 protein, abrogating toxicity.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Choque Térmico HSP110/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Decapodiformes , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Fosforilação/efeitos dos fármacos , Dobramento de Proteína , Proteômica , Medula Espinal/citologia , Medula Espinal/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Vesículas Transportadoras/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
J Neurosci ; 33(24): 10048-56, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761900

RESUMO

Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3ß in the axon. Abnormal levels of activated GSK3ß and abnormally phosphorylated kinesin light chains were found in nerve samples from a mouse model of Krabbe disease. Administration of GSK3ß inhibitors significantly ameliorated transport defects in vitro and in vivo in peripheral axons of the mutant mouse. This study identifies psychosine as a pathogenic sphingolipid able to block fast axonal transport and is the first to provide a molecular mechanism underlying dying-back degeneration in this genetic leukodystrophy.


Assuntos
Transporte Axonal/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Leucodistrofia de Células Globoides/patologia , Proteínas Motores Moleculares/metabolismo , Neurônios/patologia , Psicosina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicogênio Sintase Quinase 3 beta , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/genética , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Nervo Isquiático/patologia , Fatores de Tempo
12.
Cardiovasc Diabetol ; 13: 11, 2014 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-24410801

RESUMO

BACKGROUND: Cardiomyopathy and distal symmetrical polyneuropathy (DSPN), including sensory and autonomic dysfunction, often co-occur in diabetic mellitus (DM) patients. However, the temporal relationship and progression between these two complications has not been investigated. Using a streptozotocin DM animal model that develops insensate neuropathy, our aim was to examine in parallel the development of DSPN and DM-associated changes in cardiac structure and function as well as potential mechanisms, such as autonomic dysfunction, evaluated by changes in urinary and myocardial norepinephrine content and myocardial neuronal markers. METHODS: Sensory neuropathy was measured by behavioral tests using Von Frey filaments and Hargreaves methods. Echocardiography was used to evaluate myocardial structure and function. Autonomic function was evaluated by measuring urinary and myocardial norepinephrine (NE) levels by enzyme-linked immunosorbent assay and high-performance liquid chromatography/mass spectrometry. Quantitative immunohistochemistry was used to measure the myocardial neuronal markers, calcitonin gene-related peptide (CGRP) and general neuronal protein gene product 9.5 (PGP 9.5). RESULTS: The DM group developed tactile and thermal insensate neuropathy 4-5 weeks after DM onset. Cardiovascular changes were found between 4 and 12 weeks after DM onset and included bradycardia, diastolic and systolic dysfunction and cardiac dilation. There was a 2.5-fold reduction in myocardial NE levels and a 5-fold increase in urinary NE levels in the DM group. Finally, there was a 2.3-fold increase in myocardial CGRP levels in the DM group and no change in PGP9.5 levels. CONCLUSIONS: Cardiovascular structural and functional changes developed early in the course of DM and in combination with insensate neuropathy. In parallel, signs of cardiac autonomic dysfunction were also found and included decreased myocardial NE levels and altered CGRP levels. These results may indicate the need for early cardiovascular evaluation in DM patients with insensate neuropathy.


Assuntos
Diabetes Mellitus Experimental/diagnóstico , Cardiomiopatias Diabéticas/diagnóstico , Neuropatias Diabéticas/diagnóstico , Modelos Animais de Doenças , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/urina , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/urina , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/urina , Masculino , Ratos , Ratos Endogâmicos F344
13.
Brain ; 135(Pt 7): 2058-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22719003

RESUMO

The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson's disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson's disease. There was a decline in axonal transport motor proteins in sporadic Parkinson's disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kinesin levels precede the alterations in dopaminergic phenotypic markers (tyrosine hydroxylase) in the early stages of Parkinson's disease. This reduction was significantly greater in nigral neurons containing α-synuclein inclusions. Unlike conventional kinesin, reductions in the levels of the cytoplasmic dynein light chain Tctex type 3 subunit were only observed at late Parkinson's disease stages. Reductions in levels of conventional kinesin and cytoplasmic dynein subunits were recapitulated in a rat genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A30P). Together, our data suggest that α-synuclein aggregation is a key feature associated with reductions of axonal transport motor proteins in Parkinson's disease and support the hypothesis that dopaminergic neurodegeneration following a 'dying-back' pattern involving axonal transport disruption.


Assuntos
Transporte Axonal/fisiologia , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Transtornos Parkinsonianos/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
14.
Life (Basel) ; 13(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37109474

RESUMO

In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.

15.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808871

RESUMO

Expansion of a hexanucleotide repeat in a noncoding region of the C9ORF72 gene is responsible for a significant fraction of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) cases, but identifying specific toxic gene products and mechanisms has been difficult. Pathogenesis was proposed to involve the production of toxic RNA species and/or accumulation of toxic dipeptide repeats (DPRs), but distinguishing between these mechanisms has been challenging. In this study, we first use complementary model systems for analyzing pathogenesis in adult-onset neurodegenerative diseases to characterize the pathogenicity of DPRs produced by Repeat Associated Non-ATG (RAN) translation of C9ORF72 in specific cellular compartments: isolated axoplasm and giant synapse from the squid. Results showed selective axonal and presynaptic toxicity of GP-DPRs, independent of associated RNA. These effects involved downstream ASK1 signaling pathways that affect fast axonal transport and synaptic function, a pathogenic mechanism shared with other mutant proteins associated with familial ALS, like SOD1 and FUS. These pathways are sufficient to produce the "dying-back" axonopathy seen in ALS. However, other mutant genes (e.g., SOD1) that activate this mechanism rarely produce FTD. When parallel studies in primary motor neurons from rats were conducted, an additional pathogenic mechanism was revealed. The GR- and PR-DPRs, which had no effect on axonal transport or synaptic transmission, were found to disrupt the nuclei of transfected neurons, leading to "dying-forward" neuropathy. All C9-DRP-mediated toxic effects observed here are independent of whether the corresponding mRNAs contained hexanucleotide repeats or alternative codons. These studies establish the divergent toxicity of C9-DPRs that cause neurodegeneration in ALS and FTD, suggesting that these two independent pathogenic mechanisms may contribute to disease heterogeneity and/or synergize on disease progression in C9ORF72 patients with both ALS and FTD symptoms.

16.
Cells ; 12(19)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37830617

RESUMO

The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aß) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transporte Axonal , Doença de Alzheimer/metabolismo , Axônios/metabolismo
17.
J Neurosci ; 31(27): 9858-68, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734277

RESUMO

Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2-18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.


Assuntos
Transporte Axonal/genética , Axônios/patologia , Encéfalo/patologia , Cinesinas/metabolismo , Fosfotransferases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Análise de Variância , Animais , Transporte Axonal/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Decapodiformes , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Técnicas In Vitro , Cinesinas/genética , Modelos Biológicos , Mutagênese/genética , Fragmentos de Peptídeos/metabolismo , Isótopos de Fósforo/farmacocinética , Fosfotransferases/genética , Proteínas Proto-Oncogênicas c-jun/farmacocinética , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
19.
Front Mol Neurosci ; 15: 896314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620447

RESUMO

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

20.
Biochemistry ; 50(47): 10300-10, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22039833

RESUMO

Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.


Assuntos
Transporte Axonal , Regulação para Baixo , Proteínas de Choque Térmico HSP70/metabolismo , Tauopatias/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Chaperonas Moleculares/metabolismo , Polimerização , Ligação Proteica , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa