Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Cell Mol Med ; 27(22): 3553-3564, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37860940

RESUMO

Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.


Assuntos
Glioblastoma , Glioma , Humanos , Adesão Celular , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Inteligência Artificial
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901713

RESUMO

PTPmu (PTPµ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma (glioma), and the resulting extracellular and intracellular fragments are believed to stimulate cancer cell growth and/or migration. Therefore, drugs targeting these fragments may have therapeutic potential. Here, we used the AtomNet® platform, the first deep learning neural network for drug design and discovery, to screen a molecular library of several million compounds and identified 76 candidates predicted to interact with a groove between the MAM and Ig extracellular domains required for PTPmu-mediated cell adhesion. These candidates were screened in two cell-based assays: PTPmu-dependent aggregation of Sf9 cells and a tumor growth assay where glioma cells grow in three-dimensional spheres. Four compounds inhibited PTPmu-mediated aggregation of Sf9 cells, six compounds inhibited glioma sphere formation/growth, while two priority compounds were effective in both assays. The stronger of these two compounds inhibited PTPmu aggregation in Sf9 cells and inhibited glioma sphere formation down to 25 micromolar. Additionally, this compound was able to inhibit the aggregation of beads coated with an extracellular fragment of PTPmu, directly demonstrating an interaction. This compound presents an interesting starting point for the development of PTPmu-targeting agents for treating cancer including glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Inteligência Artificial , Transdução de Sinais , Proteínas Tirosina Fosfatases/metabolismo , Adesão Celular
3.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671448

RESUMO

Ultrasound imaging is a widely used, readily accessible and safe imaging modality. Molecularly-targeted microbubble- and nanobubble-based contrast agents used in conjunction with ultrasound imaging expand the utility of this modality by specifically targeting and detecting biomarkers associated with different pathologies including cancer. In this study, nanobubbles directed to a cancer biomarker derived from the Receptor Protein Tyrosine Phosphatase mu, PTPmu, were evaluated alongside non-targeted nanobubbles using contrast enhanced ultrasound both in vitro and in vivo in mice. In vitro resonant mass and clinical ultrasound measurements showed gas-core, lipid-shelled nanobubbles conjugated to either a PTPmu-directed peptide or a Scrambled control peptide were equivalent. Mice with heterotopic human tumors expressing the PTPmu-biomarker were injected with PTPmu-targeted or control nanobubbles and dynamic contrast-enhanced ultrasound was performed. Tumor enhancement was more rapid and greater with PTPmu-targeted nanobubbles compared to the non-targeted control nanobubbles. Peak tumor enhancement by the PTPmu-targeted nanobubbles occurred within five minutes of contrast injection and was more than 35% higher than the Scrambled nanobubble signal for the subsequent two minutes. At later time points, the signal in tumors remained higher with PTPmu-targeted nanobubbles demonstrating that PTPmu-targeted nanobubbles recognize tumors using molecular ultrasound imaging and may be useful for diagnostic and therapeutic purposes.


Assuntos
Biomarcadores Tumorais/metabolismo , Meios de Contraste/química , Imagem Molecular , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Ultrassonografia , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Camundongos Nus , Neoplasias/patologia
4.
Nanomedicine ; 28: 102216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413511

RESUMO

Poor prognosis for glioblastoma (GBM) is a consequence of the aggressive and infiltrative nature of gliomas where individual cells migrate away from the main tumor to distant sites, making complete surgical resection and treatment difficult. In this manuscript, we characterize an invasive pediatric glioma model and determine if nanoparticles linked to a peptide recognizing the GBM tumor biomarker PTPmu can specifically target both the main tumor and invasive cancer cells in adult and pediatric glioma models. Using both iron and lipid-based nanoparticles, we demonstrate by magnetic resonance imaging, optical imaging, histology, and iron quantification that PTPmu-targeted nanoparticles effectively label adult gliomas. Using PTPmu-targeted nanoparticles in a newly characterized orthotopic pediatric SJ-GBM2 model, we demonstrate individual tumor cell labeling both within the solid tumor margins and at invasive and dispersive sites.


Assuntos
Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/metabolismo , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus
5.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698368

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary brain cancer affecting adults. Therapeutic options for GBM have remained the same for over a decade with no significant improvement. Many therapies that are successful in culture have failed in patients, likely due to the complex microenvironment in the brain, which has yet to be reproduced in any culture model. Furthermore, the high passage number of cultured cells and clonal selection fail to recapitulate the molecular and genomic signatures of GBM. We have established orthotopic patient-derived xenografts (PDX) from 37 GBM patients with human GBM. Of the 69 patient samples analyzed, we were successful in passaging 37 lines three or more generations (53.6%). After phenotypic characterization of the xenografted tumor tissue, two different growth patterns emerged highly invasive or localized. The phenotype was dependent on malignancy and previous treatment of the patient from which the xenograft was derived. Physiologically, mice exhibited symptoms more quickly with each subsequent passage, particularly in the localized tumors. Study of these physiologically relevant human xenografts in mice will enable therapeutic screenings in a microenvironment that more closely resembles GBM and may allow development of individualized patient models which may eventually be used for simulating treatment.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Idoso , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091655

RESUMO

An integrated approach has been adopted by the World Health Organization (WHO) for diagnosing brain tumors. This approach relies on the molecular characterization of biopsied tissue in conjunction with standard histology. Diffuse gliomas (grade II to grade IV malignant brain tumors) have a wide range in overall survival, from months for the worst cases of glioblastoma (GBM) to years for lower grade astrocytic and oligodendroglial tumors. We previously identified a change in the cell adhesion molecule PTPmu in brain tumors that results in the generation of proteolytic fragments. We developed agents to detect this cell surface-associated biomarker of the tumor microenvironment. In the current study, we evaluated the PTPmu biomarker in tissue microarrays and individual tumor samples of adolescent and young adult (n = 25) and adult (n = 69) glioma populations using a fluorescent histochemical reagent, SBK4-TR, that recognizes the PTPmu biomarker. We correlated staining with clinical data and found that high levels of the PTPmu biomarker correlate with increased survival of glioma patients, including those with GBM. Patients with high PTPmu live for 48 months on average, whereas PTPmu low patients live only 22 months. PTPmu high staining indicates a doubling of patient survival. Use of the agent to detect the PTPmu biomarker would allow differentiation of glioma patients with distinct survival outcomes and would complement current molecular approaches used in glioma prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Prognóstico , Microambiente Tumoral
7.
Semin Cell Dev Biol ; 37: 108-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223585

RESUMO

The initial cloning of receptor protein tyrosine phosphatases (RPTPs) was met with excitement because of their hypothesized function in counterbalancing receptor tyrosine kinase signaling. In recent years, members of a subfamily of RPTPs with homophilic cell-cell adhesion capabilities, known as the R2B subfamily, have been shown to have functions beyond that of counteracting tyrosine kinase activity, by independently influencing cell signaling in their own right and by regulating cell adhesion. The R2B subfamily is composed of four members: PTPmu (PTPRM), PTPrho (PTPRT), PTPkappa (PTPRK), and PCP-2 (PTPRU). The effects of this small subfamily of RPTPs is far reaching, influencing several developmental processes and cancer. In fact, R2B RPTPs are predicted to be tumor suppressors and are among the most frequently mutated protein tyrosine phosphatases (PTPs) in cancer. Confounding these conclusions are more recent studies suggesting that proteolysis of the full-length R2B RPTPs result in oncogenic extracellular and intracellular protein fragments. This review discusses the current knowledge of the role of R2B RPTPs in development and cancer, with special detail given to the mechanisms and implications that proteolysis has on R2B RPTP function. We also touch upon the concept of exploiting R2B proteolysis to develop cancer imaging tools, and consider the effects of R2B proteolysis on axon guidance, perineural invasion and collective cell migration.


Assuntos
Neoplasias/metabolismo , Proteólise , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Adesão Celular , Movimento Celular , Humanos , Neurogênese
8.
Anal Chem ; 89(11): 5932-5939, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481080

RESUMO

Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPµ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T1 mapping technique in glioma xenografts. Quantitative T1 mapping is an imaging method used to measure the longitudinal relaxation time, the T1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPµ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPµ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPµ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic and commercial entities in the field of molecular MRI ultimately leading to improved detection of disease.


Assuntos
Meios de Contraste/química , Glioma/diagnóstico por imagem , Guanidina , Imagem Molecular/métodos , Animais , Xenoenxertos , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Proteínas Tirosina Fosfatases , Sensibilidade e Especificidade
9.
NMR Biomed ; 28(3): 384-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639694

RESUMO

High-field preclinical MRI scanners are now commonly used to quantitatively assess disease status and the efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical 7.0-T MRI implementation of the highly novel MR fingerprinting (MRF) methodology which has been described previously for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a fast imaging with steady-state free precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 min. This initial high-field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for the quantification of numerous MRI parameters for a wide variety of preclinical imaging applications.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glioma/patologia , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Imagens de Fantasmas
10.
J Cell Biochem ; 115(9): 1609-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24771611

RESUMO

Cleavage of the cell-cell adhesion molecule, PTPµ, occurs in human glioblastoma multiforme brain tumor tissue and glioma cell lines. PTPµ cleavage is linked to increased cell motility and growth factor independent survival of glioma cells in vitro. Previously, PTPµ was shown to be cleaved by furin in the endoplasmic reticulum to generate membrane associated E- (extracellular) and P- (phosphatase) subunits, and by ADAMs and the gamma secretase complex at the plasma membrane. We also identified the presence of additional extracellular and intracellular PTPµ fragments in brain tumors. We set out to biochemically analyze PTPµ cleavage in cancer cells. We determined that, in addition to the furin-processed form of PTPµ, a pool of 200 kDa full-length PTPµ exists at the plasma membrane that is cleaved directly by ADAM to generate a larger shed form of the PTPµ extracellular segment. Notably, in glioma cells, full-length PTPµ is also subject to calpain cleavage, which generates novel PTPµ fragments not found in other immortalized cells. We also observed glycosylation and phosphorylation differences in the cancer cells. Our data suggest that an additional serine protease also contributes to PTPµ shedding in glioma cells. We hypothesize that a "protease storm" occurs in cancer cells whereby multiple proteases converge to reduce the presence of cell-cell adhesion molecules at the plasma membrane and to generate protein fragments with unique biological functions. As a consequence, the "protease storm" could promote the migration and invasion of tumor cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Moléculas de Adesão Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas ADAM/metabolismo , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Furina/metabolismo , Glicosilação , Humanos , Fosforilação , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química
11.
Pharm Res ; 31(6): 1469-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23471641

RESUMO

PURPOSE: To synthesize and evaluate a peptide targeted nanoglobular dual modal imaging agent specific to a cancer biomarker in tumor stroma for MRI and fluorescence visualization of prostate tumor in image-guided surgery. METHODS: A peptide (CGLIIQKNEC, CLT1) targeted generation 2 nanoglobular (polylysine dendrimer with a silsesquioxane core) dual modal imaging agent, CLT1-G2-(Gd-DOTA-MA)-Cy5, was synthesized by stepwise conjugation of Gd-DOTA-MA, Cy5 and peptide to the dendrimer. Contrast enhanced MR imaging of the targeted dual imaging agent was evaluated on a Bruker 7T animal scanner with male athymic nude mice bearing orthotopic PC3-GFP prostate tumor. Fluorescence tumor imaging of the agent was carried out on a Maestro fluorescence imaging system. RESULTS: The targeted agent CLT1-G2-(Gd-DOTA-MA)-Cy5 produced greater contrast enhancement in the tumor tissue than the control agent KAREC-G2-(Gd-DOTA-MA)-Cy5 at a dose of 30 µmol-Gd/kg in the MR images of the tumor bearing mice. Signal-to-noise ratio (SNR) of CLT1-G2-(Gd-DOTA-MA)-Cy5 in the tumor tissue was approximately 2 fold of that of the control agent in the first 15 min post-injection. The targeted agent also resulted in bright fluorescence signals in the tumor tissue. CONCLUSION: The CLT1 peptide targeted nanoglobular dual-imaging agent CLT1-G2-(Gd-DOTA-MA)-Cy5 has a potential for MRI and fluorescence visualization of prostate tumor.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/cirurgia , Cirurgia Assistida por Computador/instrumentação , Animais , Carbocianinas/química , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Fluorescência , Corantes Fluorescentes , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/química , Humanos , Masculino , Camundongos , Camundongos Nus , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Neoplasias da Próstata/patologia
12.
Int J Cancer ; 132(7): 1624-32, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22987116

RESUMO

Detection of an extracellular cleaved fragment of a cell-cell adhesion molecule represents a new paradigm in molecular recognition and imaging of tumors. We previously demonstrated that probes that recognize the cleaved extracellular domain of receptor protein tyrosine phosphatase mu (PTPmu) label human glioblastoma brain tumor sections and the main tumor mass of intracranial xenograft gliomas. In this article, we examine whether one of these probes, SBK2, can label dispersed glioma cells that are no longer connected to the main tumor mass. Live mice with highly dispersive glioma tumors were injected intravenously with the fluorescent PTPmu probe to test the ability of the probe to label the dispersive glioma cells in vivo. Analysis was performed using a unique three-dimensional (3D) cryo-imaging technique to reveal highly migratory and invasive glioma cell dispersal within the brain and the extent of colabeling by the PTPmu probe. The PTPmu probe labeled the main tumor site and dispersed cells up to 3.5 mm away. The cryo-images of tumors labeled with the PTPmu probe provide a novel, high-resolution view of molecular tumor recognition, with excellent 3D detail regarding the pathways of tumor cell migration. Our data demonstrate that the PTPmu probe recognizes distant tumor cells even in parts of the brain where the blood-brain barrier is likely intact. The PTPmu probe has potential translational significance for recognizing tumor cells to facilitate molecular imaging, a more complete tumor resection and to serve as a molecular targeting agent to deliver chemotherapeutics to the main tumor mass and distant dispersive tumor cells.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Glioblastoma/patologia , Técnicas de Diagnóstico Molecular , Sondas Moleculares , Fragmentos de Peptídeos/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/enzimologia , Espaço Extracelular/metabolismo , Citometria de Fluxo , Corantes Fluorescentes , Glioblastoma/enzimologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Imaging Biol ; 25(4): 744-757, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695968

RESUMO

PURPOSE: Maximal, safe resection of solid tumors is considered a critical first step in successful cancer treatment. The advent of fluorescence image-guided surgery (FIGS) using non-specific agents has improved patient outcomes, particularly in the case of glioblastoma. Molecularly targeted agents that recognize specific tumor biomarkers have the potential to augment these gains. Identification of the optimal combination of targeting moiety and fluorophore is needed prior to initiating clinical trials. PROCEDURES: A 20-amino acid peptide (SBK2) recognizing the receptor protein-tyrosine phosphatase mu (PTPmu)-derived tumor-specific biomarker, with or without a linker, was conjugated to three different near-infrared fluorophores: indocyanine green (ICG), IRDye® 800CW, and Tide Fluor™ 8WS. The in vivo specificity, time course, and biodistribution were evaluated for each using mice with heterotopic human glioma tumors that express the PTPmu biomarker to identify component combinations with optimal properties for FIGS. RESULTS: SBK2 conjugated to ICG demonstrated excellent specificity for gliomas in heterotopic tumors. SBK2-ICG showed significantly higher in vivo tumor labeling compared to the Scram-ICG control from 10 min to 24 h, p < 0.01 at all timepoints, following injection, as well as a significantly higher ex vivo tumor signal at 24 h, p < 0.001. Inserting a six-amino acid linker between the targeting peptide and ICG increased the clearance rate and resulted in significantly higher in vivo tumor signal relative to its linker-containing Scrambled control from 10 min to 8 h, p < 0.05 at all timepoints, after dosing. Agents made with the more hydrophilic IRDye® 800CW and Tide Fluor™ 8WS showed no specific tumor labeling relative to the controls. The IRDye 800CW-conjugated agents cleared within 1 h, while the non-specific fluorescent tumor signal generated by the Tide Fluor 8WS-conjugated agents persists beyond 24 h. CONCLUSIONS: The SBK2 PTPmu-targeting peptide conjugated to ICG specifically labels heterotopic human gliomas grown in mice between 10 min and 24 h following injection. Similar molecules constructed with more hydrophilic dyes demonstrated no specificity. These studies present a promising candidate for use in FIGS of PTPmu biomarker-expressing tumors.


Assuntos
Glioma , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Humanos , Animais , Camundongos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Monoéster Fosfórico Hidrolases , Biomarcadores Tumorais/metabolismo , Distribuição Tecidual , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Corantes Fluorescentes , Verde de Indocianina , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Aminoácidos , Imagem Óptica
14.
Bioconjug Chem ; 23(8): 1548-56, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22812444

RESUMO

Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)(4) specific to clotted plasma proteins in tumor stroma for cancer MR molecular imaging. CLT1-dL-(Gd-DOTA)(4) was synthesized by conjugating four Gd-DOTA monoamide chelates to a CLT1 peptide via generation 1 lysine dendrimer. The T(1) relaxivity of CLT1-dL-(Gd-DOTA)(4) was 40.4 mM(-1) s(-1) per molecule (10.1 mM(-1) s(-1) per Gd) at 37 °C and 1.5 T. Fluorescence imaging showed high binding specificity of CLT1 to orthotopic PC3 prostate tumor in mice. The contrast agent resulted in improved tumor contrast enhancement in male athymic nude mice bearing orthotopic PC3 prostate tumor xenograft at a dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for high-resolution MR molecular imaging of prostate tumor.


Assuntos
Compostos Heterocíclicos/química , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Compostos Organometálicos/química , Peptídeos Cíclicos/síntese química , Neoplasias da Próstata/diagnóstico , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Masculino , Camundongos , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacocinética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Especificidade por Substrato
15.
Pharm Res ; 29(4): 953-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22139536

RESUMO

PURPOSE: To study the effectiveness of a peptide targeted nanoglobular Gd-DOTA complexes for MR molecular imaging of prostate cancer in a mouse orthotopic PC-3 prostate cancer model. METHODS: A CLT1 (CGLIIQKNEC) peptide-targeted generation 2 nanoglobular Gd-DOTA monoamide conjugate [CLT1-G2-(Gd-DOTA)] was used for imaging fibrin-fibronectin complexes in prostate tumor using a non-specific peptide KAREC modified conjugate, KAREC-G2-(Gd-DOTA) as a control. Cy5 conjugates of CLT1 and KAREC were synthesized for binding studies. Orthotopic PC-3 prostate tumors were established in the prostate of athymic male nude mice. MRI study was performed on a Bruker 7T small animal MRI system. RESULTS: CLT1 peptide showed specific binding in the prostate tumor with no binding in normal tissues. The control peptide had little binding in normal and tumor tissues. CLT1-G2-(Gd-DOTA) resulted in stronger contrast enhancement in tumor tissue than KAREC-G2-(Gd-DOTA). CLT1-G2-(Gd-DOTA) generated ~100% increase in contrast-to-noise ratio (CNR) in the tumor compared to precontrast CNR at 1 min post-injection, while KAREC-G2-(Gd-DOTA) resulted in 8% increase. CONCLUSION: CLT1-G2-(Gd-DOTA) is a promising molecular MRI contrast agent for fibrin-fibronectin complexes in tumor stroma. It has potential for diagnosis and assessing prognosis of malignant tumors with MRI.


Assuntos
Carbocianinas , Meios de Contraste , Corantes Fluorescentes , Compostos Heterocíclicos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Compostos Organometálicos , Neoplasias da Próstata/diagnóstico , Animais , Carbocianinas/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fibrina/metabolismo , Fibronectinas/metabolismo , Corantes Fluorescentes/química , Compostos Heterocíclicos/química , Humanos , Masculino , Camundongos , Camundongos Nus , Nanopartículas , Compostos Organometálicos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transplante Heterólogo
16.
J Cell Biochem ; 112(1): 39-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20506511

RESUMO

The receptor protein tyrosine phosphatase PTPµ has a cell-adhesion molecule-like extracellular segment and a catalytically active intracellular segment. This structure gives PTPµ the ability to transduce signals in response to cell-cell adhesion. Full-length PTPµ is down-regulated in glioma cells by proteolysis which is linked to increased migration of these cells in the brain. To gain insight into the substrates PTPµ may be dephosphorylating to suppress glioma cell migration, we used a substrate trapping method to identify PTPµ substrates in tumor cell lines. We identified both PKCδ and PLCγ1 as PTPµ substrates. As PLCγ1 activation is linked to increased invasion of cancer cells, we set out to determine whether PTPµ may be upstream of PLCγ1 in regulating glioma cell migration. We conducted brain slice assays using U87-MG human glioma cells in which PTPµ expression was reduced by shRNA to induce migration. Treatment of the same cells with PTPµ shRNA and a PLCγ1 inhibitor prevented migration of the cells within the brain slice. These data suggest that PLCγ1 is downstream of PTPµ and that dephosphorylation of PLCγ1 is likely to be a major pathway through which PTPµ suppresses glioma cell migration.


Assuntos
Movimento Celular , Fosfolipase C gama/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Neoplasias Encefálicas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Fosfolipase C gama/genética , Fosforilação , RNA Mensageiro/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Transdução de Sinais
17.
Mol Cell Neurosci ; 44(1): 78-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20197094

RESUMO

Classical cadherins play distinct roles in axon growth and guidance in the visual system, however, the signaling pathways they activate remain unclear. Growth cones on each cadherin substrate have a unique morphology suggesting that distinct signals are activated by neurite outgrowth on E-, N-, and R-cadherin. We previously demonstrated that receptor protein tyrosine phosphatase-mu (PTPmu) is required for E- and N-cadherin-dependent neurite outgrowth. In this manuscript, we demonstrate that PTPmu regulates R-cadherin-mediated neurite outgrowth. Furthermore, we evaluated whether known PTPmu-associated signaling proteins, Rac1, Cdc42, IQGAP1 and PKCdelta, regulate neurite outgrowth mediated by these cadherins. While Rac1 activity is required for neurite outgrowth on all three cadherins Cdc42/IQGAP1 are required only for N- and R-cadherin-mediated neurite outgrowth. In addition, we determined that PKC activity is required for E- and R-cadherin-mediated, but not N-cadherin-mediated neurite outgrowth. In summary, distinct PTPmicro-associated signaling proteins are required to promote neurite outgrowth on cadherins.


Assuntos
Caderinas/metabolismo , Diferenciação Celular/fisiologia , Cones de Crescimento/metabolismo , Neuritos/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Retina/embriologia , Animais , Caderinas/genética , Células Cultivadas , Embrião de Galinha , Cones de Crescimento/ultraestrutura , Neuritos/ultraestrutura , Neurogênese/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Retina/citologia , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
J Biomed Mater Res B Appl Biomater ; 109(11): 1744-1753, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33847464

RESUMO

We employed aqueous solutions of highly-hydrolyzed (>99+%) poly(vinyl alcohol), PVA, to coat plastic dishes as a method to efficiently induce three-dimensional (3D) culturing of cells. The coatings were prepared by simple evaporation of 3 wt/vol% solutions of PVA in water and require no additional processing steps after air drying under sterile conditions. The coating allows spheroids to form in solution. Spheroid formation is usually preferable to two-dimensional (2D) culturing as it creates a more realistic ex vivo model of some human tissues and tumors. Using PVA-coated cell culture plates, we demonstrated that we can grow reproducibly sized spheroids using several human glioma cell lines, including LN229, U87 MG, and Gli36, and the embryonic kidney cell line, 293T. Spheroids formed on PVA-coated plates grow as well as on other commercially-available, low-attachment plates, and have excellent optical imaging properties. As spheroids, LN229 cells express markers of cancer stem cells. Finally, we confirmed that spheroids generated on PVA-coated plates are sensitive to molecular perturbations, as increased expression of the cell adhesion molecule PTPµ significantly increased the size of spheroids. The PVA hydrogel layer is an effective tool for creating a more realistic ex vivo culture system than traditional 2D culture and can be used to generate cell spheroids for potential application in drug screening and personalized medicine for diseases such as cancer.


Assuntos
Comunicação Celular , Técnicas de Cultura de Células , Álcool de Polivinil/química , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Humanos , Esferoides Celulares/citologia , Propriedades de Superfície
19.
Diagnostics (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513911

RESUMO

BACKGROUND: We developed a fluorophore-conjugated peptide agent, SBK4, that detects a tumor-specific proteolyzed form of the cell adhesion molecule, PTPmu, found in the tumor microenvironment. We previously demonstrated its tissue specific distribution in high-grade brain tumors. To extend those studies to other aggressive solid tumor types, we assessed the tissue distribution of PTPmu/SBK4 in a set of matched gynecologic cancer patient derived xenografts (PDXs) and primary patient tumors, as well as a limited cohort of tumors from gynecological cancer patients. PDXs isolated from the tissues of cancer patients have been shown to yield experimentally manipulatable models that replicate the clinical characteristics of individual patients' tumors. In this study, gynecological cancer PDXs and patient biopsies were examined to determine if tumor-specific proteolyzed PTPmu was present. METHODS: We used the peptide agent SBK4 conjugated to the fluorophore Texas Red (TR) to label tumor tissue microarrays (TMAs) containing patient and/or PDX samples from several high-grade gynecologic cancer types, and quantified the level of staining with Image J. In one TMA, we were able to directly compare the patient and the matched PDX tissue on the same slide. RESULTS: While normal tissue had very little SBK4-TR staining, both primary tumor tissue and PDXs have higher labeling with SBK4-TR. Matched PDXs and patient samples from high-grade endometrial and ovarian cancers demonstrated higher levels of PTPmu by staining with SBK4 than normal tissue. CONCLUSION: In this sample set, all PDXs and high-grade ovarian cancer samples had increased labeling by SBK4-TR compared with the normal controls. Our results indicate that proteolyzed PTPmu and its novel peptide detection agent, SBK4, allow for the visualization of tumor-specific changes in cell adhesion molecules by tissue-based staining, providing a rationale for further development as an imaging agent in aggressive solid tumors, including gynecological cancers.

20.
Cancer Res ; 80(2): 156-162, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31719100

RESUMO

Local and metastatic relapses of prostate cancer often occur following attempted curative resection of the primary tumor, and up to 66% of local recurrences are associated with positive margins. Therefore, technologies that can improve the visualization of tumor margins and adjuvant therapies to ablate remaining tumor tissues are needed during surgical resection of prostate adenocarcinoma. Photodynamic agents have the potential to combine both fluorescence for image-guided surgery (IGS) and photodynamic therapy (PDT) to resect and ablate cancer cells. The objective of this study was to determine the utility of a targeted PDT agent for IGS and adjuvant PDT. Using a previously developed prostate-specific membrane antigen (PSMA)-targeted PDT agent, PSMA-1-Pc413, we showed that PSMA-1-Pc413 selectively highlighted PSMA-expressing tumors, allowing IGS and more complete tumor resection compared with white light surgery. Subsequent PDT further reduced tumor recurrence and extended animal survival significantly. This approach also enabled identification of tumor cells in lymph nodes. In summary, this study presents a potential new treatment option for patients with prostate cancer undergoing surgery, which improves tumor visualization and discrimination during surgery, including identification of cancer in lymph nodes. SIGNIFICANCE: These findings present a photodynamic agent that can be used for both photodynamic therapy and image-guided surgery, allowing better visualization of tumor margins and elimination of residual tumor tissues.


Assuntos
Antineoplásicos/administração & dosagem , Recidiva Local de Neoplasia/prevenção & controle , Fotoquimioterapia/métodos , Prostatectomia/métodos , Neoplasias da Próstata/terapia , Cirurgia Assistida por Computador/métodos , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Humanos , Injeções Intravenosas , Masculino , Margens de Excisão , Camundongos , Imagem Molecular/métodos , Recidiva Local de Neoplasia/patologia , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa