Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2319782121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008664

RESUMO

Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.


Assuntos
Ritmo Circadiano , Glicólise , Fosforilação Oxidativa , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Ritmo Circadiano/fisiologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Fibroblastos/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Cell ; 141(4): 583-94, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478252

RESUMO

Melanomas are highly heterogeneous tumors, but the biological significance of their different subpopulations is not clear. Using the H3K4 demethylase JARID1B (KDM5B/PLU-1/RBP2-H1) as a biomarker, we have characterized a small subpopulation of slow-cycling melanoma cells that cycle with doubling times of >4 weeks within the rapidly proliferating main population. Isolated JARID1B-positive melanoma cells give rise to a highly proliferative progeny. Knockdown of JARID1B leads to an initial acceleration of tumor growth followed by exhaustion which suggests that the JARID1B-positive subpopulation is essential for continuous tumor growth. Expression of JARID1B is dynamically regulated and does not follow a hierarchical cancer stem cell model because JARID1B-negative cells can become positive and even single melanoma cells irrespective of selection are tumorigenic. These results suggest a new understanding of melanoma heterogeneity with tumor maintenance as a dynamic process mediated by a temporarily distinct subpopulation.


Assuntos
Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Histona Desmetilases com o Domínio Jumonji , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Receptor Notch1/metabolismo , Proteínas Repressoras/genética , Proteínas Serrate-Jagged , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
4.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36156348

RESUMO

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Assuntos
Cálcio , Melanoma , Humanos , Cálcio/metabolismo , Proteômica , Melanoma/genética , Melanoma/metabolismo , Oxirredução , Fenótipo , Linhagem Celular Tumoral
6.
Nature ; 546(7658): 431-435, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607484

RESUMO

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated differentiation followed by activation of new signalling pathways, partially mediated by the activity of the transcription factors JUN and/or AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics in single cells. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general program in which expression is displayed in rare subpopulations of cells.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/genética , Melanoma/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Marcadores Genéticos/efeitos dos fármacos , Marcadores Genéticos/genética , Humanos , Hibridização in Situ Fluorescente , Indóis/farmacologia , Masculino , Proteínas Nucleares/metabolismo , Proteína Oncogênica p65(gag-jun)/metabolismo , Fatores de Transcrição SOXE/deficiência , Fatores de Transcrição SOXE/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Análise de Célula Única , Sulfonamidas/farmacologia , Fatores de Transcrição de Domínio TEA , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 15(1): 633, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245503

RESUMO

The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.


Assuntos
Relógios Circadianos , Melanoma , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Carcinogênese/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Melanoma/genética
8.
Neuro Oncol ; 25(4): 674-686, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36054930

RESUMO

BACKGROUND: Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS: We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS: Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs nonMBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS: Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Cutâneas , Humanos , Prognóstico , Melanoma/patologia , Neoplasias Encefálicas/genética , Biomarcadores , Microambiente Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Cancer Res Commun ; 2(8): 842-856, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36380966

RESUMO

Adoptive cell transfer (ACT) immunotherapy has remarkable efficacy against some hematological malignancies. However, its efficacy in solid tumors is limited by the adverse tumor microenvironment (TME) conditions, most notably that acidity inhibits T and natural killer (NK) cell mTOR complex 1 (mTORC1) activity and impairs cytotoxicity. In several reported studies, systemic buffering of tumor acidity enhanced the efficacy of immune checkpoint inhibitors. Paradoxically, we found in a c-Myc-driven hepatocellular carcinoma model that systemic buffering increased tumor mTORC1 activity, negating inhibition of tumor growth by anti-PD1 treatment. Therefore, in this proof-of-concept study, we tested the metabolic engineering of immune effector cells to mitigate the inhibitory effect of tumor acidity while avoiding side effects associated with systemic buffering. We first overexpressed an activated RHEB in the human NK cell line NK-92, thereby rescuing acid-blunted mTORC1 activity and enhancing cytolytic activity. Then, to directly mitigate the effect of acidity, we ectopically expressed acid extruder proteins. Whereas ectopic expression of carbonic anhydrase IX (CA9) moderately increased mTORC1 activity, it did not enhance effector function. In contrast, overexpressing a constitutively active Na+/H+-exchanger 1 (NHE1; SLC9A1) in NK-92 did not elevate mTORC1 but enhanced degranulation, target engagement, in vitro cytotoxicity, and in vivo antitumor activity. Our findings suggest the feasibility of overcoming the inhibitory effect of the TME by metabolically engineering immune effector cells, which can enhance ACT for better efficacy against solid tumors.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Microambiente Tumoral
10.
Oncogene ; 40(9): 1659-1673, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33500549

RESUMO

The clinical benefit of MAPK pathway inhibition in melanoma patients carrying BRAF mutations is temporal. After the initial response to treatment, the majority of tumors will develop resistance and patients will relapse. Here we demonstrate that the endothelin-endothelin receptor B (ETBR) signaling pathway confers resistance to MAPK pathway inhibitors in BRAF mutated melanoma. MAPK blockade, in addition to being anti-proliferative, induces a phenotypic change which is characterized by increased expression of melanocyte-specific genes including ETBR. In the presence of MAPK inhibitors, activation of ETBR by endothelin enables the sustained proliferation of melanoma cells. In mouse models of melanoma, including patient-derived xenograft models, concurrent inhibition of the MAPK pathway and ETBR signaling resulted in a more effective anti-tumor response compared to MAPK pathway inhibition alone. The combination treatment significantly reduced tumor growth and prolonged survival compared to therapies with MAPK pathway inhibitors alone. The phosphoproteomic analysis revealed that ETBR signaling did not induce resistance towards MAPK pathway inhibitors by restoring MAPK activity, but instead via multiple alternative signaling pathways downstream of the small G proteins GNAq/11. Together these data indicate that a combination of MAPK pathway inhibitors with ETBR antagonists could have a synergistically beneficial effect in melanoma patients with hyperactivated MAPK signaling pathways.


Assuntos
Melanoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Endotelina B/genética , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas do Receptor de Endotelina B/farmacologia , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Res ; 81(21): 5540-5554, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518212

RESUMO

Despite impressive advances in melanoma-directed immunotherapies, resistance is common and many patients still succumb to metastatic disease. In this context, harnessing natural killer (NK) cells, which have thus far been sidelined in the development of melanoma immunotherapy, could provide therapeutic benefits for cancer treatment. To identify molecular determinants of NK cell-mediated melanoma killing (NKmK), we quantified NK-cell cytotoxicity against a panel of genetically diverse melanoma cell lines and observed highly heterogeneous susceptibility. Melanoma protein microarrays revealed a correlation between NKmK and the abundance and activity of a subset of proteins, including several metabolic factors. Oxidative phoshorylation, measured by oxygen consumption rate, negatively correlated with melanoma cell sensitivity toward NKmK, and proteins involved in mitochondrial metabolism and epithelial-mesenchymal transition were confirmed to regulate NKmK. Two- and three-dimensional killing assays and melanoma xenografts established that the PI3K/AKT/mTOR signaling axis controls NKmK via regulation of NK cell-relevant surface proteins. A "protein-killing-signature" based on the protein analysis predicted NKmK of additional melanoma cell lines and the response of patients with melanoma to anti-PD-1 checkpoint therapy. Collectively, these findings identify novel NK cell-related prognostic biomarkers and may contribute to improved and personalized melanoma-directed immunotherapies. SIGNIFICANCE: NK-cell cytotoxicity assays and protein microarrays reveal novel biomarkers of NK cell-mediated melanoma killing and enable development of signatures to predict melanoma patient responsiveness to immunotherapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Melanoma/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise Serial de Proteínas , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 81(20): 5230-5241, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34462276

RESUMO

Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Crista Neural/patologia , Células-Tronco Neurais/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Prognóstico , Receptores de Ácidos Lisofosfatídicos/genética , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 12(1): 346, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436641

RESUMO

Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Linfócitos do Interstício Tumoral/imunologia , Mastócitos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
14.
Cancer Res ; 67(7): 3177-84, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17409425

RESUMO

Mutations in the BRAF serine/threonine kinase gene are frequently found in cutaneous melanomas. Activation of hypoxia inducible factor-1alpha (HIF-1alpha) in response to both hypoxic stress and oncogenic signals has important implications in cancer development and progression. Here, we report that mutant BRAF(V600E) increases HIF-1alpha expression in melanoma cells. Our microarray profiling data in 35 melanoma and melanocyte cell lines showed that HIF-1alpha gene expression was significantly increased in melanomas harboring BRAF(V600E) mutation. Stable suppression of mutant BRAF(V600E) or both wild-type and mutant BRAF(V600E) by RNA interference in melanoma cells resulted in significantly decreased HIF-1alpha expression. Knockdown of mutant BRAF(V600E) induced significant reduction of cell survival and proliferation under hypoxic conditions, whereas knockdown of both wild-type and mutant BRAF(V600E) resulted in further reduction. The effects of BRAF knockdown can be rescued by reintroducing BRAF(V600E) into tumor cells. Transfection of BRAF(V600E) into melanoma cells with wild-type BRAF induced significantly more hypoxic tolerance. Knockdown of HIF-1alpha in melanoma cells resulted in decreased cell survival under hypoxic conditions. Pharmacologic inhibition of BRAF by BAY 43-9006 also resulted in decreased HIF-1alpha expression. Although HIF-1alpha translational rate was not changed, the protein was less stable in BRAF knockdown cells. In additional, von Hippel-Lindau protein expression was significantly increased in BRAF knockdown cells. Our data show for the first time that BRAF(V600E) mutation increases HIF-1alpha expression and melanoma cell survival under hypoxic conditions and suggest that effects of the oncogenic V600E BRAF mutation may be partially mediated through the HIF-1alpha pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Melanoma/enzimologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Benzenossulfonatos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Melanoma/genética , Melanoma/patologia , Niacinamida/análogos & derivados , Compostos de Fenilureia , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Sorafenibe , Transfecção , Regulação para Cima
15.
Cancer Discov ; 9(1): 64-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279173

RESUMO

Physical changes in skin are among the most visible signs of aging. We found that young dermal fibroblasts secrete high levels of extracellular matrix (ECM) constituents, including proteoglycans, glycoproteins, and cartilage-linking proteins. The most abundantly secreted was HAPLN1, a hyaluronic and proteoglycan link protein. HAPLN1 was lost in aged fibroblasts, resulting in a more aligned ECM that promoted metastasis of melanoma cells. Reconstituting HAPLN1 inhibited metastasis in an aged microenvironment, in 3-D skin reconstruction models, and in vivo. Intriguingly, aged fibroblast-derived matrices had the opposite effect on the migration of T cells, inhibiting their motility. HAPLN1 treatment of aged fibroblasts restored motility of mononuclear immune cells, while impeding that of polymorphonuclear immune cells, which in turn affected regulatory T-cell recruitment. These data suggest that although age-related physical changes in the ECM can promote tumor cell motility, they may adversely affect the motility of some immune cells, resulting in an overall change in the immune microenvironment. Understanding the physical changes in aging skin may provide avenues for more effective therapy for older patients with melanoma. SIGNIFICANCE: These data shed light on the mechanochemical interactions that occur between aged skin, tumor, and immune cell populations, which may affect tumor metastasis and immune cell infiltration, with implications for the efficacy of current therapies for melanoma.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Envelhecimento , Colágeno/metabolismo , Melanoma/metabolismo , Pele/metabolismo , Animais , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Sistema Imunitário , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Proteoglicanas/metabolismo , Pele/fisiopatologia , Microambiente Tumoral
16.
Cancer Res ; 66(8): 4182-90, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618740

RESUMO

Cellular signaling mediated by Notch receptors results in coordinated regulation of cell growth, survival, and differentiation. Aberrant Notch activation has been linked to a variety of human neoplasms. Here, we show that Notch1 signaling drives the vertical growth phase (VGP) of primary melanoma toward a more aggressive phenotype. Constitutive activation of Notch1 by ectopic expression of the Notch1 intracellular domain enables VGP primary melanoma cell lines to proliferate in a serum-independent and growth factor-independent manner in vitro and to grow more aggressively with metastatic activity in vivo. Notch1 activation also enhances tumor cell survival when cultured as three-dimensional spheroids. Such effects of Notch signaling are mediated by activation of the mitogen-activated protein kinase (MAPK) and Akt pathways. Both pathways are activated in melanoma cells following Notch1 pathway activation. Inhibition of either the MAPK or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway reverses the Notch1 signaling-induced tumor cell growth. Moreover, the growth-promoting effect of Notch1 depends on mastermind-like 1. We further showed that Notch1 activation increases tumor cell adhesion and up-regulates N-cadherin expression. Our data show regulation of MAPK/PI3K-Akt pathway activities and expression of N-cadherin by the Notch pathway and provide a mechanistic basis for Notch signaling in the promotion of primary melanoma progression.


Assuntos
Antígenos CD/biossíntese , Caderinas/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/enzimologia , Melanoma/patologia , Receptor Notch1/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Ativação Enzimática , Humanos , Camundongos , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Notch1/biossíntese , Receptor Notch1/genética , Esferoides Celulares , Transativadores , Fatores de Transcrição , Regulação para Cima
17.
Oncotarget ; 9(9): 8206-8222, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492189

RESUMO

Besides somatic mutations or drug efflux, epigenetic reprogramming can lead to acquired drug resistance. We recently have identified early stress-induced multi-drug tolerant cancer cells termed induced drug-tolerant cells (IDTCs). Here, IDTCs were generated using different types of cancer cell lines; melanoma, lung, breast and colon cancer. A common loss of the H3K4me3 and H3K27me3 and gain of H3K9me3 mark was observed as a significant response to drug exposure or nutrient starvation in IDTCs. These epigenetic changes were reversible upon drug holidays. Microarray, qRT-PCR and protein expression data confirmed the up-regulation of histone methyltransferases (SETDB1 and SETDB2) which contribute to the accumulation of H3K9me3 concomitantly in the different cancer types. Genome-wide studies suggest that transcriptional repression of genes is due to concordant loss of H3K4me3 and regional increment of H3K9me3. Conversely, genome-wide CpG site-specific DNA methylation showed no common changes at the IDTC state. This suggests that distinct histone methylation patterns rather than DNA methylation are driving the transition from parental to IDTCs. In addition, silencing of SETDB1/2 reversed multi drug tolerance. Alterations of histone marks in early multi-drug tolerance with an increment in H3K9me3 and loss of H3K4me3/H3K27me3 is neither exclusive for any particular stress response nor cancer type specific but rather a generic response.

18.
Clin Cancer Res ; 24(19): 4771-4784, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563139

RESUMO

Purpose: Telomerase promoter mutations are highly prevalent in human tumors including melanoma. A subset of patients with metastatic melanoma often fail multiple therapies, and there is an unmet and urgent need to prolong disease control for those patients.Experimental Design: Numerous preclinical therapy-resistant models of human and mouse melanoma were used to test the efficacy of a telomerase-directed nucleoside, 6-thio-2'-deoxyguanosine (6-thio-dG). Integrated transcriptomics and proteomics approaches were used to identify genes and proteins that were significantly downregulated by 6-thio-dG.Results: We demonstrated the superior efficacy of 6-thio-dG both in vitro and in vivo that results in telomere dysfunction, leading to apoptosis and cell death in various preclinical models of therapy-resistant melanoma cells. 6-thio-dG concomitantly induces telomere dysfunction and inhibits the expression level of AXL.Conclusions: In summary, this study shows that indirectly targeting aberrant telomerase in melanoma cells with 6-thio-dG is a viable therapeutic approach in prolonging disease control and overcoming therapy resistance. Clin Cancer Res; 24(19); 4771-84. ©2018 AACR See related commentary by Teh and Aplin, p. 4629.


Assuntos
Desoxiguanosina/análogos & derivados , Melanoma/tratamento farmacológico , Regiões Promotoras Genéticas/genética , Telomerase/genética , Tionucleosídeos/farmacologia , Animais , Linhagem Celular Tumoral , Desoxiguanosina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Mutação , Telômero/efeitos dos fármacos , Telômero/genética
19.
Mol Cancer Ther ; 5(5): 1136-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16731745

RESUMO

Although >66% of melanomas harbor activating mutations in BRAF and exhibit constitutive activity in the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase signaling pathway, it is unclear how effective MEK inhibition will be as a sole therapeutic strategy for melanoma. We investigated the anticancer activity of MEK inhibition in a panel of cell lines derived from radial growth phase (WM35) and vertical growth phase (WM793) of primary melanomas and metastatic melanomas (1205Lu, 451Lu, WM164, and C8161) in a three-dimensional spheroid model and found that the metastatic lines were completely resistant to MEK inhibition (U0126 and PD98059) but the earlier stage cell lines were not. Similarly, these same metastatic melanoma lines were also resistant to inhibitors of the phosphatidylinositol 3-kinase/Akt pathway (LY294002 and wortmannin). Under adherent culture conditions, the MEK inhibitors blocked growth through the induction of cell cycle arrest and up-regulation of p27, but this was readily reversible following inhibitor washout. However, when the phosphatidylinositol 3-kinase and MEK inhibitors were combined, the growth and invasion of the metastatic melanoma three-dimensional spheroids were blocked. Taken together, these results suggest that the most aggressive melanomas are resistant to strategies targeting one signaling pathway and that multiple signaling pathways may need to be targeted for maximal therapeutic efficacy. It is further suggested that BRAF mutational status is not predictive of response to MEK inhibition under three-dimensional culture conditions.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/patologia , Transdução de Sinais , Butadienos/metabolismo , Butadienos/farmacologia , Linhagem Celular Tumoral , Cromonas/metabolismo , Cromonas/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , MAP Quinase Quinase Quinases/metabolismo , Melanoma/metabolismo , Morfolinas/metabolismo , Morfolinas/farmacologia , Metástase Neoplásica , Nitrilas/metabolismo , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares
20.
JCI Insight ; 2(1): e89760, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28097235

RESUMO

Approximately 50% of high-grade serous ovarian cancers (HGSOCs) have defects in genes involved in homologous recombination (HR) (i.e., BRCA1/2). Preclinical models to optimize therapeutic strategies for HR-deficient (HRD) HGSOC are lacking. We developed a preclinical platform for HRD HGSOCs that includes primary tumor cultures, patient-derived xenografts (PDXs), and molecular imaging. Models were characterized by immunohistochemistry, targeted sequencing, and reverse-phase protein array analysis. We also tested PDX tumor response to PARP, CHK1, and ATR inhibitors. Fourteen orthotopic HGSOC PDX models with BRCA mutations (BRCAMUT) were established with a 93% success rate. The orthotopic PDX model emulates the natural progression of HGSOC, including development of a primary ovarian tumor and metastasis to abdominal viscera. PDX response to standard chemotherapy correlated to that demonstrated in the patient. Pathogenic mutations and HGSOC markers were preserved after multiple mouse passages, indicating retention of underlying molecular mechanisms of carcinogenesis. A BRCA2MUT PDX with high p-CHK1 demonstrated a similar delay of tumor growth in response to PARP, CHK1, and ATR inhibitors. A poly (ADP-ribose) polymerase (PARP) inhibitor radiotracer correlated with PARP1 activity and showed response to PARP inhibition in the BRCA2MUT PDX model. In summary, the orthotopic HGSOC PDX represents a robust and reliable model to optimize therapeutic strategies for BRCAMUT HGSOC.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Xenoenxertos/metabolismo , Neoplasias Ovarianas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/metabolismo , Feminino , Xenoenxertos/efeitos dos fármacos , Recombinação Homóloga , Humanos , Camundongos , Imagem Molecular/métodos , Mutação , Neoplasias Ovarianas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa