Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(3): 1903-1922, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541431

RESUMO

The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.

2.
Analyst ; 146(5): 1747-1759, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33470260

RESUMO

The analysis of 'cutting' or additive agents in cocaine, like benzocaine (BZC), allows police analysts to identify each component of the sample, thus obtaining information like the drugs' provenience. This kind of drug profiling is of great value in tackling drug trafficking. Electropolymerized molecularly imprinted polymers (e-MIPs) on portable screen-printed carbon electrodes (SPCEs) were developed in this study for BZC determination. The MIPs' electropolymerization was performed on a carbon surface using the anaesthetic BZC as the template molecule and 3-amino-4-hydroxybenzoic acid (3,4-AHBA) as the functional monomer. The build-up of this biomimetic sensor was carefully characterized by cyclic voltammetry (CV) and optimized. Cyclic voltammetric investigation demonstrated that BZC oxidation had a complex and pH-dependent mechanism, but at pH 7.4 a single, well-defined oxidation feature was observed. The BZC-MIP interactions were studied by computer-aided theoretical modeling by means of density functional theory (DFT) calculations. The electroanalytical methodology was effectively applied to artificial urine samples; BZC molecular recognition was achieved with a low limit of detection (LOD) of 2.9 nmol L-1 employing square-wave voltammetry (SWV). The e-MIPs were then used to 'fingerprint' genuine cocaine samples, assisted by principal component analysis (PCA), at the central forensic laboratory of the Brazilian Federal Police (BFP) with a portable potentiostat. This electroanalysis provided proof-of-concept that the drugs could be voltammetrically 'fingerprinted' using e-MIPs supported by chemometric analysis.


Assuntos
Cocaína , Impressão Molecular , Benzocaína , Técnicas Eletroquímicas , Eletrodos , Polímeros Molecularmente Impressos , Polímeros
3.
Phys Chem Chem Phys ; 23(16): 9980-9990, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870397

RESUMO

In this work the H2 adsorption at a Cu(i)-SSZ-13 exchanged zeolite was theoretically investigated. A systematic cluster approach was used and different density functionals (B3LYP, B3LYP-D3(BJ), M06L, PBE, PBE-D3(BJ) and ωB97XD) and a def2-SVP basis set were benchmarked. In order to select the best approach to the H2 adsorption over a Cu(i)-SSZ-13 cluster with 78 atoms (16 T-sites), two main tasks were performed: (1) a comparison between theoretical and experimental structures and (2) a comparison between theoretical and experimental adsorption enthalpies. By employing the most suitable functional - the ωB97X-D - the H2 interaction with the zeolite structure was studied by means of NBO, NCI, AIM and DLPNO-CCSD(T)/LED analyses.

4.
Chemistry ; 24(45): 11738-11747, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29726052

RESUMO

Highly diastereo- and enantioselective, noncovalent, substrate-directable Heck desymmetrizations of cyclopentenyl olefins containing hydroxymethyl and carboxylate functional groups are presented. These conformationally unbiased cyclic olefins underwent effective arylations in yields of up to 97 %, diastereoselectivity up to >20:1, and enantiomeric excesses of up to 99 %. Noncovalent directing effects were shown to be prevalent in both Heck-Matsuda and oxidative Heck reactions, allowing the preferential formation of cis-substituted aryl cyclopentenes containing two stereocenters, including quaternary stereocenters. These results further validate the internal out-of-coordination-sphere ion-dipole interaction concept directing the reaction diastereoselectivity to the cis-Heck product. This approach is complementary to existing methods using bis-phosphine monoxide ligands to give the opposite trans-diastereoisomer. The applicability of the method is showcased by the straightforward synthesis of a potent phosphodiesterase 4 inhibitor in a diastereo- and enantioselective manner. The reaction is operationally simple and has broad scope with regard to the nature of the arenediazonium salt and boronic acid employed. The mechanism and origin of stereoselectivity were investigated with control experiments and DFT calculations that fully supported the stabilizing internal out-of-coordination-sphere ion-dipole interaction between the resident functional group and cationic palladium.

5.
Inorg Chem ; 57(9): 4898-4905, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630368

RESUMO

An unusual photooxidation of a coordinated 4-mercaptopyridine ( SpyH) ligand in the [Ru(Hmctpy)(dmbpy)(κ S-SpyH)]2+complex (Hmctpy = 4'-carboxy-2,2';6',2″-terpyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine) takes place under visible and UV irradiation, in aerated acetonitrile. The [Ru(mctpy)(dmbpy)(κ S-SO2py)] sulfinato product has been characterized by a variety of methods, including X-ray diffraction which supports the presence of the Ru-κ S-SpyH isomer in the starting complex. The photooxidation of the 4-mercaptopyridine ligand enhances the back-bonding interactions in the complex by means of the strongly acceptor 4-pyridinesulfinato-SO2py species, increasing the redox potential of the Ru(III)/Ru(II) couple significantly from 1.23 to 1.62 V. It also led to pronounced changes in the electronic and NMR spectra of the complexes, corroborated by DFT and ZINDO-S calculations. A possible mechanism based on referenced data of photooxidation has been proposed, which involves the formation of a reactive oxygen species and intermediate endoperoxide species, yielding a very stable Ru-sulfinato product. This novel species exhibits stronger luminescence (Φ f = 0.004) than the starting complex under UV excitation.

6.
J Comput Chem ; 38(28): 2371-2377, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667667

RESUMO

The regioselectivity of the NHC-Pd catalyzed Heck coupling reaction between phenyl bromide and styrene has been investigated using the density functional theory, wave-function (WF)-based methods and two different sizes of model ligands. In addition to the WF methods, the TPSS-D3, ω B97X-D, BP86-D3, and M06-L density functionals were reliable approaches to be applied, independently of the basis set. Moreover, the NCI analysis showed that weak interactions are important forces to be taken into account when exploring the regioselectivity of this reaction, mainly when a crowded NHC ligand is present. © 2017 Wiley Periodicals, Inc.

7.
J Org Chem ; 81(5): 2010-8, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26836260

RESUMO

New computationally driven protocols for the Heck desymmetrization of 3-cyclopenten-1-ol with aryldiazonium tetrafluoroborates were developed. These new conditions furnished remarkable product selectivity originating from a resident hydroxyl group and the critical choice of the reaction solvent. Mechanistic insights gleaned from theoretical calculations of the putative transition states predicted toluene as an adequate solvent choice to attain high enantioselectivity by strengthening the noncovalent interaction of the substrate hydroxyl group and the chiral cationic palladium catalyst. Laboratory experiments validated the theoretical predictions, and by employing 2% MeOH/toluene as solvent, the Heck-Matsuda reaction provided exclusively the cis-4-arylcyclopentenols 3a-l in good to excellent yields in enantiomeric excesses up to 99%. The performance of the new PyOx ligand (S)-4-tert-butyl-2-(3,5-dichloropyridin-2-yl)-4,5-dihydrooxazole was also successfully evaluated in the Heck-Matsuda desymmetrization of 3-cyclopenten-1-ol. The synthetic potential of these highly functionalized cis-4-arylcyclopentenols is illustrated by a gold-catalyzed synthesis of cyclopenta[b]benzofuran skeletons.

8.
Acc Chem Res ; 46(11): 2626-34, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23848308

RESUMO

Palladium-catalyzed C-C cross-coupling reactions (Suzuki-Miyaura, Negishi, Stille, Sonogashira, etc.) are among the most useful reactions in modern organic synthesis because of their wide scope and selectivity under mild conditions. The many steps involved and the availability of competing pathways with similar energy barriers cause the mechanism to be quite complicated. In addition, the short-lived intermediates are difficult to detect, making it challenging to fully characterize the mechanism of these reactions using purely experimental techniques. Therefore, computational chemistry has proven crucial for elucidating the mechanism and shaping our current understanding of these processes. This mechanistic elucidation provides an opportunity to further expand these reactions to new substrates and to refine the selectivity of these reactions. During the past decade, we have applied computational chemistry, mostly using density functional theory (DFT), to the study of the mechanism of C-C cross-coupling reactions. This Account summarizes the results of our work, as well as significant contributions from others. Apart from a few studies on the general features of the catalytic cycles that have highlighted the existence of manifold competing pathways, most studies have focused on a specific reaction step, leading to the analysis of the oxidative addition, transmetalation, and reductive elimination steps of these processes. In oxidative addition, computational studies have clarified the connection between coordination number and selectivity. For transmetalation, computation has increased the understanding of different issues for the various named reactions: the role of the base in the Suzuki-Miyaura cross-coupling, the factors distinguishing the cyclic and open mechanisms in the Stille reaction, the identity of the active intermediates in the Negishi cross-coupling, and the different mechanistic alternatives in the Sonogashira reaction. We have also studied the closely related direct arylation process and highlighted the role of an external base as proton abstractor. Finally, we have also rationalized the effect of ligand substitution on the reductive elimination process. Computational chemistry has improved our understanding of palladium-catalyzed cross-coupling processes, allowing us to identify the mechanistic complexity of these reactions and, in a few selected cases, to fully clarify their mechanisms. Modern computational tools can deal with systems of the size and complexity involved in cross-coupling and have a continuing role in solving specific problems in this field.

9.
J Mol Model ; 30(5): 152, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687370

RESUMO

CONTEXT: The combined use of transition metal-catalyzed C-H activation with aryne annulation reactions has emerged as an important strategy in organic synthesis. In this study, the mechanisms of the palladium(II)-catalyzed annulation reaction of N-methoxy amides and arynes were computationally investigated by density functional theory. The role of methoxy amide as a directing group was elucidated through the calculation of three different pathways for the C-H activation step, showing that the pathway where amide nitrogen acts as a directing group is preferable. At the reductive elimination transition state, an unstable seven-membered ring is formed preventing the lactam formation. A substituent effect study based on an NBO analysis, Hammet, and using a More O'Ferall-Jenks plot indicates that the C-H activation step proceeds via an electrophilic concerted metalation-deprotonation (eCMD) mechanism. The results show that electron-withdrawing groups increase the activation barrier and contribute to an early Pd-C bond formation and a late C-H bond breaking when compared with electron-donating substituents. Our computational results are in agreement with the experimental data provided in the literature. METHODS: All calculations were performed using Gaussian 16 software. Geometry optimizations, frequency analyses at 393.15 K, and IRC calculations were conducted at the M06L/Def2-SVP level of theory. Corrected electronic energies, NBO charges, and Wiberg bond indexes were computed at the M06L/Def2-TZVP//M06L/Def2-SVP level of theory. Implicit solvent effects were considered in all calculations using the SMD model, with acetonitrile employed as the solvent.

10.
RSC Adv ; 14(2): 1169-1185, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174281

RESUMO

Herein, a series of compounds (TPD1-TPD6) having a D-π-A architecture was quantum chemically designed via the structural modulation of TPR. Quantum chemical calculations were employed to gain a comprehensive insight into the structural and optoelectronic properties of the designed molecules at the M06/6-311G(d,p) level. Interestingly, all the designed chromophores displayed narrow energy gaps (2.123-1.788 eV) and wider absorption spectra (λmax = 833.619-719.709 nm) with a bathochromic shift in comparison to the reference compound (λmax = 749.602 nm and Egap = 3.177 eV). Further, Egap values were utilized to evaluate global reactivity parameters (GRPs), which indicate that all the chromophores expressed higher softness (σ = 0.134-0.559 eV-1) and lower hardness (η = 4.155-4.543 eV) values than the reference chromophore. Efficient charge transfer from donors towards acceptors was noted through FMOs, which was also supported by DOS and TDM analyses. Overall, the TPD3 derivative exhibited a remarkable reduction in the HOMO-LUMO band gap (1.788 eV) with a red shift as λmax = 833.619 nm. Furthermore, it exhibited prominent linear and non-linear characteristics such as µtotal = 24.1731 D, 〈α〉 = 2.89 × 10-22 esu, and ßtotal = 7.24 × 10-27 esu, among all derivatives. The above findings revealed that significant non-linear optical materials could be achieved through structural tailoring with studied efficient acceptors.

11.
RSC Adv ; 14(18): 12841-12852, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645518

RESUMO

The benzothiophene based chromophores (A1D1-A1D5) with A-π-A configuration were designed via end-capped tailoring with benzothiophene type acceptors using reference compound (A1R). Quantum chemical calculations were accomplished at M06/6-311G(d,p) level to probe optoelectronic and photophysical properties of designed chromophores. Therefore, frontier molecular orbitals (FMOs), binding energy (Eb), open circuit voltage (Voc), transition density matrix (TDM), density of state (DOS) and UV-Vis analyses of A1R and A1D1-A1D5 were accomplished. The designed compounds (A1D1-A1D5) exhibited absorption values in the visible region as 616.316-649.676 nm and 639.753-665.508 nm in gas and chloroform phase, respectively, comparing with reference chromophore. An efficient charge transference from HOMO towards LUMO was found in A1D1-A1D5 chromophores which was further supported by TDM and DOS analyses. Among all chromophores, A1D2 exhibited unique characteristics such as reduced band gap (2.354 eV), higher softness (σ = 0.424 eV), lower exciton binding energy (0.491 eV) and maximum value of open circuit voltage (Voc = 1.981 V). Consequently, A1D2 may be considered as potential candidate for the development of optoelectronic devices. These analyses revealed that the studied compounds exhibited promising findings. They may be utilized in the realm of organic solar cells.

12.
RSC Adv ; 14(29): 20441-20453, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38946775

RESUMO

Herein, unique A-D-A configuration-based molecules (NBD1-NBD7) were designed from the reference compound (NBR) by utilizing the end-capped acceptor modification approach. Various electron-withdrawing units -F, -Cl, -CN, -NO2, -CF3, -HSO3, and -COOCH3, were incorporated into terminals of reference compound to designed NBD1-NBD7, respectively. A theoretical investigation employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) was performed at B3LYP/6-311G(d,p) level. To reveal diverse opto-electronic and photovoltaic properties, the frontier molecular orbitals (FMOs), absorption maxima (λ max), density of states (DOS), exciton binding energy (E b), open-circuit voltage (V oc) and transition density matrix (TDM) analyses were executed at the same functional. Moreover, the global reactivity parameters (GRPs) were calculated using the HOMO-LUMO energy gaps from the FMOs. Significant results were obtained for the designed molecules (NBD1-NBD7) as compared to NBR. They showed lesser energy band gaps (2.024-2.157 eV) as compared to the NBR reference (2.147 eV). The tailored molecules also demonstrated bathochromic shifts in the chloroform (671.087-717.164 nm) and gas phases (623.251-653.404 nm) as compared to NBR compound (674.189 and 626.178 nm, respectively). From the photovoltaic perspectives, they showed promising results (2.024-2.157 V). Furthermore, the existence of intramolecular charge transfer (ICT) in the designed compounds was depicted via their DOS and TDM graphical plots. Among all the investigated molecules, NBD4 was disclosed as the excellent candidate for solar cell applications owing to its favorable properties such as the least band gap (2.024 eV), red-shifted λ max in the chloroform (717.164 nm) and gas (653.404 nm) phases as well as the minimal E b (0.126 eV). This is due to the presence of highly electronegative -NO2 unit at the terminal of electron withdrawing acceptor moiety, which leads to increased conjugation and enhanced the intramolecular charge transfer (ICT) rate. The obtained insights suggested that the designed molecules could be considered as promising materials for potential applications in the realm of OSCs.

13.
RSC Adv ; 13(40): 28076-28088, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37746336

RESUMO

Herein, a series of indacenodithiophene-based derivatives (TNPD1-TNPD6) were designed having D-π-A architecture via end capped acceptor modulation of a reference molecule (TNPR) to investigate nonlinear optical (NLO) behavior. Quantum chemical calculations were accomplished to examine electronic, structural and optical properties utilizing a density functional theory (DFT) approach at M06 functional with 6-311G(d,p) basis set. For this, natural bond orbitals (NBOs), density of states (DOS), frontier molecular orbitals (FMOs), transition density matrix (TDM) and non-linear optical (NLO) analyses were performed for TNPR and TNPD1-TNPD6. The structural modifications revealed a significant electronic contribution in tuning the HOMOs and LUMOs of the derivatives with lowered energy gaps and wider absorption spectra. FMOs findings revealed that compound TNPD5 was found with the lowest energy gap (1.692 eV) and with the highest softness (0.591 eV-1) among the derivatives. Furthermore, a UV-Vis study also disclosed that maximum absorption (λmax = 852.242 nm) was exhibited by TNPD5 in chloroform solvent. All the derivatives exhibited significant NLO results; in particular, TNPD5 showed the highest first hyper-polarizability (ßtot = 4.653 × 10-27 esu) and second hyper-polarizability (γtot = 9.472 × 10-32 esu). These DFT findings revealed that the end-capped substituents play a key role in enhancing the NLO response of these push-pull chromophores and the studied derivatives can be utilized as efficient NLO materials.

14.
RSC Adv ; 13(45): 31855-31872, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37920195

RESUMO

In the current study, seven non-fullerene compounds abbreviated as ATTD2-ATTD8 were designed through structural tailoring and their nonlinear optical (NLO) properties were reported. The objective of this study was to explore the potential for newly configured D-π-A type non-fullerene-based compounds. Quantum chemical methods were adopted and revealed the molecules as highly efficient materials with favorable NLO characteristics for use in optoelectronic devices. The M06 functional along with the 6-311G(d,p) basis set in chloroform solvent were utilized for the natural bonding orbital (NBO) analysis, absorption spectra and computational assessments of frontier molecular orbitals (FMOs), global reactivity descriptors (GRPs), transition density matrix (TDM) and nonlinear optical properties (NLO) for ATTR1 and ATTD2-ATTD8. The HOMO-LUMO energy gap was significantly reduced in all the designed moieties compared to the reference compound in the following decreasing order: ATTR1 > ATTD8 > ATTD4 > ATTD5 > ATTD2 > ATTD7 > ATTD6 > ATTD3. All of the designed molecules (ATTD2-ATTD8) showed good NLO response. Global reactivity parameters were found to be closely associated with the band gap between the HOMO and LUMO orbitals, and the compound with the smallest energy gap, ATTD3, exhibited a lower hardness value of 1.754 eV and higher softness value of 0.570 eV with outstanding NLO response. For the reference compound and ATTD2-ATTD8 derivatives, attributes like dipole moment (µtot), average polarizability 〈α〉, first hyperpolarizability (ßtot), and second hyperpolarizability γtot were calculated. Out of all the derivatives, ATTD3 revealed the highest amplitude with a ßtot of 8.23 × 10-27 esu, which was consistent with the reduced band gap (1.754 eV) and suggested it was the best possibility for NLO materials in the future.

15.
ACS Omega ; 8(42): 39288-39302, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901567

RESUMO

A series of benzotrithiophene-based compounds (DCTM1-DCTM6) having D1-π1-D2-π2-A configuration were designed using a reference molecule (DCTMR) via incorporating pyrrole rings (n = 1-5) as the π-spacer (π2). Quantum chemical calculations were performed to determine the impact of the pyrrole ring on the nonlinear optical (NLO) behavior of the above-mentioned chromophores. The optoelectronic properties of the compounds were determined at the MW1PW91/6-311G(d,p) functional. Among all of the derivatives, DCTM5 exhibited the least highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band gap (Eg) 0.968 eV with a high softness of 0.562 eV-1, and hence possessed the highest polarizability. Interestingly, transition density matrix (TDM) findings demonstrated that DCTM5 with an effective diagonal charge transmission proportion at the acceptor group supports the frontier molecular orbital (FMO) results. Additionally, the exciton binding energy values for DCTM1-DCTM6 were found to be less than that for DCTMR and thus, the effective charge transfer was examined in the derivatives. All of the derivatives exhibited effective NLO outcomes with the highest magnitude of linear polarizability ⟨α⟩, and first (ßtot) and second (γtot) hyperpolarizabilities relative to the parent compound. Nevertheless, the highest ßtot and γtot were obtained for DTCM1 and DTCM6, 7.0440 × 10-27 and 22.260 × 10-34 esu, respectively. Hence, through this structural tailoring with a pyrrole spacer, effective NLO materials can be obtained for optoelectronic applications.

16.
Sci Rep ; 13(1): 14630, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670033

RESUMO

Fullerene free organic chromophores are widely utilized to improve the efficacy of photovoltaic materials. Herein, we designed D-π-A-π-D form chromophores (TAZD1-TAZD5) via end-capped redistribution of donor moieties by keeping the same π-bridge and central acceptor unit for organic solar cells (OSCs). To analyze the photovoltaic characteristics of these derivatives, DFT estimations were accomplished at B3LYP/6-311 G (d,p) functional. Different investigations like frontier molecular orbital (FMO), absorption spectra (UV-Vis), density of states (DOS), binding energy (Eb), open circuit voltage (Voc), and transition density matrix (TDMs) were performed to examine the optical, photophysical and electronic characteristics of afore-mentioned chromophores. A suitable band gap (∆E = 2.723-2.659 eV) with larger bathochromic shift (λmax = 554.218-543.261 nm in acetonitrile) was seen in TAZD1-TAZD5. An effective charge transference from donor to acceptor via spacer was observed by FMO analysis which further supported by DOS and TDM. Further, lower binding energy values also supported the higher exciton dissociation and greater CT in TAZD1-TAZD5. Among all the designed chromophores, TAZD5 exhibited the narrowest Egap (2.659 eV) and maximum red-shifted absorption in solvent as well as gas phase i.e. 554.218 nm and 533.219 nm, respectively which perhaps as a result of the phenothiazine-based donor group (MPT). In a nutshell, all the tailored chromophores can be considered as efficient compounds for promising OSCs with a good Voc response, interestingly, TAZD5 is found to be excellent chromophores as compared to all these designed compounds.

17.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987288

RESUMO

Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.

18.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986525

RESUMO

1,3,4-Oxadiazole moiety is a crucial pharmacophore in many biologically active compounds. In a typical synthesis, probenecid was subjected to a sequence of reactions to obtain a 1,3,4-oxadiazole-phthalimide hybrid (PESMP) in high yields. The NMR (1H and 13C) spectroscopic analysis initially confirmed the structure of PESMP. Further spectral aspects were validated based on a single-crystal XRD analysis. Experimental findings were confirmed afterwards by executing a Hirshfeld surface (HS) analysis and quantum mechanical computations. The HS analysis showed the role of the π⋯π stacking interactions in PESMP. PESMP was found to have a high stability and lower reactivity in terms of global reactivity parameters. α-Amylase inhibition studies revealed that the PESMP was a good inhibitor of α-amylase with an s value of 10.60 ± 0.16 µg/mL compared with that of standard acarbose (IC50 = 8.80 ± 0.21 µg/mL). Molecular docking was also utilized to reveal the binding pose and features of PESMP against the α-amylase enzyme. Via docking computations, the high potency of PESMP and acarbose towards the α-amylase enzyme was unveiled and confirmed by docking scores of -7.4 and -9.4 kcal/mol, respectively. These findings shine a new light on the potential of PESMP compounds as α-amylase inhibitors.

19.
Org Biomol Chem ; 10(30): 6105-11, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22648404

RESUMO

1,6-Enynes with electron-donating substituents at the alkyne undergo gold(I)-catalysed single cleavage skeletal rearrangement, whereas substrates with electron-withdrawing substituents evolve selectively to double cleavage rearrangement. Theoretical calculations provide a qualitative rationale for these effects, and suggest that bicyclo[3.2.0]hept-5-enes are involved as intermediates. We provide the first X-ray structural evidence for the formation of a product of this class in a cycloisomerisation of a 1,6-enyne.

20.
J Mol Model ; 28(10): 314, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104579

RESUMO

The reaction mechanisms of carbon dioxide and cyclohexene oxide copolymerization catalyzed by four different zinc(II)-magnesium(II) (labeled as M1-M2) catalysts were computationally studied using density functional theory at the BP86-D3(BJ)/def2-TZVP/SMD//BP86-D3(BJ)/def2-SVP/SMD level of theory. The results showed that the most effective catalyst was the ZnMg system, in which poly(cyclohexene carbonate) was the preferred product, followed by the side product cis-cyclohexene carbonate. The QTAIM, NCI and ELF analysis performed to understand the role of metals in the reaction showed that ligands and substrates interact more strongly with zinc(II) centers compared to magnesium(II) centers. Furthermore, the Zn-I interaction at the M1 position was stronger than the Mg-I interaction at the same position. All these results indicate a synergism between the metals Zn and Mg, which makes Zn(II)Mg(II) the best combination for the reaction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa