RESUMO
AbstractMany Neotropical beetles present coloration patterns mimicking red-eyed flies, which are presumably evasive mimicry models. However, the role of predators in selecting for evasive mimics in nature remains untested. In a field experiment, we used nontoxic plasticine replicas of a specialized fly-mimicking beetle species, which we placed on the host plants of the beetles. We show that replicas painted with reddish patches simulating the eyes of flesh flies experienced a much lower predation rate than control replicas. We found that beak marks were the most frequent signs of attack on plasticine replicas, underlining the potential selective pressure exerted by birds. Replicas that matched the size of the beetles suffered higher predation than smaller or larger replicas. The predation rate was also higher for beetle replicas exposed during the warm and wet season, when adult beetles occur. Our results support predator-mediated selection of mimic beetles, highlighting that reddish spots resembling flies' eyes comprise an important trait in reducing attack by avian predators.
Assuntos
Mimetismo Biológico , Besouros , Comportamento Predatório , Animais , Besouros/fisiologia , Aves/fisiologia , Dípteros/fisiologia , PigmentaçãoRESUMO
Naturally fragmented landscapes provide suitable scenarios through which to investigate patch and landscape effects on biodiversity patterns in areas that are isolated from the disturbances usually associated with human-made fragments. We aimed to investigate the patch and landscape effects on the diversity of forest-dependent and matrix-tolerant dung beetles in a naturally fragmented landscape. We also assessed the influence that seasonal and vegetation variations had on these dung beetles. We sampled dung beetles during two summers and two winters in 14 forest islands of various sizes and shapes within a natural mountainous forest archipelago in southeast Brazil. We measured the patch and landscape variables based on high-resolution multispectral images of circular sectors with radii of 100, 250, and 500â¯m. We used generalized linear mixed models to relate dung beetle metrics to patch and landscape attributes. The interaction between canopy cover and season influenced both species' richness and abundance of the dung beetle metacommunity. The forest-dependent species' richness increased with greater canopy cover, regardless of the season. Patch attributes (e.g., size, canopy cover, distance to the closest patch, and distance to continuous forest) and landscape attributes (e.g., percentage of forest in the landscape, total edge, number of patches, distance to the nearest neighbor, and shape complexity) had small general effects on dung beetle species as a whole and on matrix-tolerant species in particular. However, these values strongly influenced forest-dependent species' richness, abundance, and temporal beta diversity. The matrix-tolerant species, therefore, mask the effects of patch and landscape effects on forest-dependent species within the mountainous forest archipelago. In other words, the changes in these patch and landscape attributes influenced forest-dependent and matrix-tolerant species differently. Therefore, the evaluation of entire metacommunities may not be helpful when evaluating species-specific responses in mixed landscapes-a fact that impairs the conservation of forest-dependent species.
Assuntos
Biodiversidade , Besouros/fisiologia , Floresta Úmida , Animais , Brasil , Dinâmica Populacional , Estações do Ano , Especificidade da EspécieRESUMO
We provide the first description of the effects of local vegetation and landscape structure on the fruit-feeding butterfly community of a natural archipelago of montane rainforest islands in the Serra do Espinhaço, southeastern Brazil. Butterflies were collected with bait traps in eleven forest islands through both dry and rainy seasons for two consecutive years. The influence of local and landscape parameters and seasonality on butterfly species richness, abundance and composition were analyzed. We also examined the partitioning and decomposition of temporal and spatial beta diversity. Five hundred and twelve fruit-feeding butterflies belonging to thirty-four species were recorded. Butterfly species richness and abundance were higher on islands with greater canopy openness in the dry season. On the other hand, islands with greater understory coverage hosted higher species richness in the rainy season. Instead, the butterfly species richness was higher with lower understory coverage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape metrics of area and isolation had no effect on species richness and abundance. The composition of butterfly communities in the forest islands was not randomly structured. The butterfly communities were dependent on local and landscape effects, and the mechanism of turnover was the main source of variation in ß diversity. The preservation of this mountain rainforest island complex is vital for the maintenance of fruit-feeding butterfly community; one island does not reflect the diversity found in the whole archipelago.
Assuntos
Biodiversidade , Borboletas/fisiologia , Ecossistema , Comportamento Alimentar , Frutas , Floresta Úmida , Animais , BrasilRESUMO
Mountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world. We describe the distribution of dung beetle diversity along an altitudinal gradient on a tropical mountain in southeastern Brazil, including the spatial partitioning of taxonomic and functional diversities. The altitudinal gradient ranged from 800 up to 1400 m a.s.l. and we collected dung beetles at every 100 m of altitude. We used the Rao Index to calculate γ, α and ß diversity for taxonomic and functional diversity of dung beetles. Climatic, soil and vegetation variables were used to explain variation in community attributes along the altitudinal gradient. Dung beetle richness declined with altitude and was related to climatic and vegetation variables, but functional diversity did not follow the same pattern. Over 50% of γ taxonomic diversity was caused by among altitudes diversity (ß), while almost 100% of functional diversity was due to the α component. Contrasting ß taxonomic with ß functional diversity, we suggest that there is ecological redundancy among communities and that the environment is filtering species in terms of the Grinnellian niche, rather than the Eltonian niche. ß taxonomic diversity is caused mainly by the turnover component, reinforcing the hypothesis of environmental filtering. Global warming may have strong effects on mountain communities due to upslope range shifts and extinctions, and these events will lead to an even larger than previously expected loss of diversity as dung beetles γ taxonomic diversity is caused mainly by the ß component.
Assuntos
Altitude , Biodiversidade , Besouros , Ecossistema , Clima Tropical , Animais , Brasil , GeografiaRESUMO
Human presence and activity in tropical forest is thought to exert top-down regulation over the various 'green-world' pathways of plant-based foodwebs. However, these effects have never been explored for the 'brown-world' pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function.
Assuntos
Tamanho Corporal/fisiologia , Besouros/fisiologia , Fezes , Cadeia Alimentar , Mamíferos/fisiologia , Animais , Biodiversidade , Brasil , Defecação , Ecossistema , Humanos , Dinâmica Populacional , Árvores , Clima TropicalRESUMO
Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.